Printed Page	e 1 of 2					S	ub (Code	e: N	CEU	35
Paper Id:	100707	Roll No:									

B.TECH (SEM-VII) THEORY EXAMINATION 2019-20 **ENGINEERING HYDROLOGY**

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

a.	Describe losses in well.
b.	What is flood routing?
c.	Define depression storage.
d.	Why is base flow separated from total runoff?
e.	What is return period?
f.	What is probable maximum precipitation?
g.	Define Unit Hydrograph.
h.	Describe rainwater harvesting.
i.	What do you mean by specific capacity?
j.	Give full form of PWP and define it.

SECTION B

Attempt any three of the following: 2.

a.	What is meant by Probable Maximum Precipitation (PIIP) over a basin? Also
	explain, how PMP is estimated?
b.	Discuss briefly the various abstractions that takeplace from the precipitation.
c.	Derive the expression for discharge from the well in a confined aquifer.
d.	A catchment has five rain-gauge stations. In a year, the annual rainfall recorded by
	the gauges is 89 cm, 90 cm, 90.5 cm, 103 cm and 91 cm. For a 5% errorin the
	estimation of the mean rainfall, determine the additional number of gaugesneeded.
e.	List various direct methods of measurement of consumptive use of water.

3.

e.	List various direct methods of measurement of consumptive use of water.												
								V, 3	*				
					SECT	TON	$\mathbf{C} \mathcal{C}$	2					
3.	Attempt any o	<i>ne</i> pa	rt of	the fo	llowin	g:	0,				1	10x1=	10
a.	The following	table	gives	value	s of n	neasur	ed dis	charge	s at a s	tream	gaugi	ng sit	e in a
	year. Upstream	m of	the ga	uging	site a	ı weir	built	across	the st	ream d	divert	s 3.0	Mm^3
	and 0.50Mm ³ of water per month for irrigation and for use in an industry respectively The return flows from the irrigation is estimated as 0.8 Mm ³ and ,from												
	the industry at 0.30 Mm ³ reaching the stream upstream of the gauging site. Estimate												
	the natural flow, if the catchment area is 180 km ² and the average annual rainfall is												
	185 cm, determine the runoff-rainfall ratio.												
	Month	1	2	3	4	5	6	7	8	9	10	11	12
	Gauge	2	1.5	0.8	0.6	2.1	8.0	18.0	22.0	14.0	9.0	7.0	3.0
	Flow(Mm ³)		1.5	0.0	0.0	2.1	0.0	10.0	22.0	14.0	7.0	7.0	3.0
b.	During a floor	1 flow	the d	onth c	f wate	or in o	10m	wide r	ectono	ılar ch	annal	Wac :	found
υ.	_			-					_				
	to be 3.0m an						-						
	elevation was	four	d to	be 0.	12m.	Assur	ning 1	mannir	ıg's co	efficie	nt to	be (0.025,
	estimate the fl	ood d	ischar	ge thr	ough	the ch	annel.						

Printed	d Page 2 of 2	ub Code: NCE035
Paper	Id: 100707 Roll No:	
4.	Attempt any one part of the following:	10x1=10
a.	Define evaporation. Discuss the factor that affects the evaporation body.	from a water
b.	Distinguish between	
	i. Infiltration capacity and infiltration rate.	
	ii. Actual and Potential evapotranspiration	
5.	Attempt any one part of the following:	10x1=10
a.	What is Hydrograph? Draw a single peaked hydrograph and explain its	components.

6. Attempt any *one* part of the following:

b.

Describe various types of tubewells.

10x1=10

a.	The isohyets for annual rainfall over a catchmentbasin were drawn. The areas of strips between isohyets are indicated below. Find the averagedepth of annual precipitation over the basin.							
	Isohyet (cm)	Area (km ²)	Isohyet (cm)	Area (km²)				
	-	\ /						
	50-60	600	80-90	1010				
	60-70	2541	90-100	600				
	70-80	8745	100-110	250				
b.	Write short notes on: i. Flow measuring structures.							
		e of rainfall						
		Depth area duration curves						

7. Attempt any *one* part of the following:

10x1=10

a.	Sketch atypical flow duration curve. Also explain how it can be used in water
	resources planning and development activities?
b.	Explain the rational method of computing the peak discharge of a small catchment.
	Where it is commonly used and what are its merits and demerits? Also discuss the
	runoff coefficient C of the rational formula.