\square

B. TECH.
 (SEM VII) THEORY EXAMINATION 2019-20
 COMPUTER GRAPHICS

Time: 3 Hours
Total Marks: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 7=14$
a. What is rasterization?
b. Explain the term pixel, Aspect Ratio, Resolution.
c. Define Translation, Rotation, Shearing and Reflection.
d. What is projection? Give its types.
e. List the properties of B-Spline.
f. Distinguish between window port \& view port?
g. Define Filled area primitives. What are the common methods used?

SECTION B

2. Attempt any three of the following:
a. Discuss the digital differential analyzer (DDA) line drawingalgorithm in detail. Also give its advantages and disadvantages.
b. Use the Cohen-Sutherland algorithm to clip a line $P(70,20)$ and $Q(100,10)$ to clip a line against a window with lower left-hand cornet $(50,10)$ and upper right-hand corner $(80,40)$.
c. With suitable examples, explain all 3D transformations.
d. Make a comparison of Bezier and B-spline algorithm for curve generation.
e. Explain the A-Buffer method's algorithm. Give its important advantages over Z-buffer algorithm.

SECTION C

3. Attempt any one part of the following:
(a) Write down and explain the midpoint circle drawing algorithm. Assume 10 cm as the radius and co-ordinate origin as the center of the circle.
(b) What is a Raster scan display? Explain the process of generating a Raster image.
4. Attempt any one part of the following: $\mathbf{7 \times 1 = 7}$
(a) Explain Liang Barsky line clipping algorithm. Apply the algorithm to clip the line with coordinates $(30,60)$ and $(60,20)$ against window $\left(\mathrm{X}_{\text {minfs }}, \mathrm{y}_{\text {minin }}\right)^{*}=(10,10)$ and $\left(\mathrm{x}_{\text {max }}, \mathrm{y}_{\text {max }}\right)$ $=(50,50)$.
(b) Write Sutherland- Hodgeman polygon clipping algorithm. Also describe the modification given by Weiler and Atherton for concave polygon.
5. Attempt any one part of the following:
$7 \times 1=7$
(a) What is the significance of homogeneous coordinate system in graphics? Give 3D transformation matrices for rotation in homogeneous coordinate system. Magnify the triangle with vertices $\mathrm{A}(0,0), \mathrm{B}(1,1), \mathrm{C}(5,2)$ to twice its size keeping $\mathrm{C}(5,2)$ fixed.
(b) Differentiate parallel and perspective projections and derive their projection matrices.
6. Attempt any one part of the following:
$7 \times 1=7$
(a) Find the equation of a bezier curve which passes through the points $(0,0)$ and (2,1) and is controlled through the points $(7,5)$ and $(2,0)$. Also, explain the concept of a cubic bezier curve.
(b) What do you mean by quadric surfaces? Explain any two quadric surfaces in Cartesian system. Also give the procedure to draw them.
7. Attempt any one part of the following:
(a) What are various Back Face detection algorithms? Explain any one of them.
(b) Describe phong and Specular reflection model.
