

Printed Pages: 7

TIC - 801

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 0395 Roll No.

B. Tech.

(SEM. VIII) EXAMINATION, 2008-09 OPTIMAL CONTROL

Time: 3 Hours]

Total Marks: 100

Note: (i) Attempt all questions.

- (ii) All questions carry equal marks.
- (iii) Be precise in your answer.
- (iv) No second answer book will be provided.

Attempt any four of the following:

 $5 \times 4 = 20$

- (a) Discuss the various performance measures to be optimized in an optimal control problem.
- (b) Show that the extremal of the functional:

$$J(x) = \int_0^{\pi/4} \left(\dot{x}^2 - x^2\right) dt$$

which satisfies the boundary conditions

$$x(0) = 0, x(\pi/2) = 1$$
 is

is
$$x^*(t) = \sin t$$

- (c) Discuss the Hamiltonian approach for a variational calculus problem.
- (d) For the system

$$\dot{x} = u$$

With, $|u| \le 1$, find the control which drives the system from an arbitrary intial state to the origin and minimizes

$$J = \int_{0}^{t_1} |u(t)| dt; t_1 \text{ is free}$$

- (e) How Dynamic Programming does employ principle of optimality for solving the multistage decision process.
- (f) Draw and explain the flow chart of the steepest descent algorithm.
- Attempt any four of the following: $5\times4=20$
 - (a) Derive the Matrix Riccati equation for a continuous time regulator problem.

(b) It is desired to determine the control law that minimizes the performance measure :

$$J = 1/2 \int_{0}^{t_1} (3x^2 + 1/4u^2) dt, t_1$$
 is

specified for a first order system with differential equation given as

$$\dot{x} = 2x(t) + u(t)$$

(c) The linear discrete system

$$x_1(k+1) = x_1(k) + x_2(k)$$

 $x_2(k+1) = x_2(k) + u(k)$

is to be controlled to minimize the performance index.

$$J = \sum_{k=0}^{2} \left[4x_1^2(k) + u^2(k) \right]$$

Obtain the optimal control sequences [u(0), u(1), u(2)]; the initial state is

$$x(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T.$$

03951

Find the optimal control law for the system (d)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_1 \end{bmatrix}$$

With performance index

$$J = \int_{0}^{\infty} \left(x_1^2 + u_1^2 + u_2^2 \right) dt$$

- Discuss the Minimum Time control of a Linear (e) Time Invariant system.
- What is sub-optimal control problem? Consider (f) the second order system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

It is desired to find optimal control

$$u = -\begin{bmatrix} k_1 & k_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

which minimizes the performance index

$$J = \int_{0}^{\infty} x_1^2 dt$$
 under the constraint that $k_1 = 1$.

03951

(a) For the system described by the equations

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) + v(t)$$

$$Q = 0.5, R = 8, P_0 = \begin{bmatrix} 0.5 & 0 \\ 0 & 0 \end{bmatrix}, t_0 = 0$$

Find the equation for the optimal estimator.

(b) For the time-invariant system:

$$\dot{x}(t) = x(t) + w(t)$$
$$y(t) = x(t) + v(t)$$

$$Q = 4\alpha, R = \alpha, \alpha = constant$$

Find the time-invariant filter. Show that the answer is independent of a.

(c) Consider the combined estimation and control problem for the system:

$$\dot{x}(t) = -x(t) + u(t) + w(t)$$

$$y(t) = x(t) + v(t)$$

$$Q = 4, R = 0.5, P_0 = 0, t_0 = 0$$

It is desired to find an optimal control law that minimizes the performance index

$$J = E\left\{\frac{1}{2}x^{2}(2) + \frac{1}{2}\int_{0}^{2} (2x^{2}(t) + u^{2}(t) dt)\right\}$$

Find such a control and give a suitable scheme for the implementation of the control.

- Attempt any two of the following: 4 $10 \times 2 = 20$
 - Draw and explain the block diagram of a (a) microcomputer system with buses.
 - Discuss the microcomputer controlled DC motor (b) system. Also draw the relevant diagrams.
 - (c) Discuss the functional blocks of Galil DMC105 for a DC motor control system.
- Attempt any two of the following: 5 $10 \times 2 = 20$
 - (a) Discuss the advantages of Digital Signal Processors (DSPs) over Microprocessors. Discuss a DSP controlled motor system.

- (b) Discuss the effect of quantization of steady state error with a suitable example.
- (c) Explain how state variable technique is used to analyze the least bound error of a quantized system.

