TCS-802

(b)

factors in a parallel architecture.

(c) Draw a 16 bit omega network using  $2 \times 2$ switches as building block.

1

[Turn Over

(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID: 0148 Roll No.

B.Tech.

(SEM VIII) EVEN SEMESTER THEORY EXAMINATION, 2009-2010

## ADVANCED COMPUTER ARCHITECTURE

Time : 3 Hours

(a)

1.

Printed Pages-4

Attempt any two parts of the following :

Analyse the data dependencies among the following statements in a given program :

| S1 : Load R1, 1024     | /R1←1024/                     |
|------------------------|-------------------------------|
| S2 : Load R2, M(10)    | /R2←Memory (10) /             |
| S3 : Add R1, R2        | $/R1 \leftarrow (R1) + (R2)/$ |
| S4 : Store M(1024), R1 | /Memory (1024)←(R1)/          |
| S5 : Store M(R2), 1024 | /Memory (64)←1024/            |
|                        |                               |

Note that (*Ri*) means that the content of register Ri and Memory (10) contains 64 initially.

- (i) Draw a dependence graph to show all the dependencies.
- Are there any resource dependencies if only one copy of each functional unit is available in the CPU ? (ii)

Explain the types of system performance

## 11573TCS-802

Total Marks : 100

- Attempt any two parts of the following :
  - (a) Consider n level hierarchical memory, let 'h<sub>i</sub>' be hit ratio at level M<sub>i</sub>. Show that access frequency to 'M<sub>i</sub>' is given by :

 $fi = (1-h_1) (1-h_2) (1-h_{i-1}).hi$ 

Further show that effective access time :

 $T_{eff} = \Sigma fi t_i$ 

here ' $t_I$ ' are measured with respect to CPU.

- (b) Compare and contrast static interconnection network and dynamic interconnection network ?
- (c) What do you mean by control flow and Data flow computers? State advantage and disadvantage of data flow computing.
- 3. Attempt any two parts of the following :
  - (a) Explain the Flynn's classification for Computer Architectures based on the nature of the instruction flow executed by the computer with diagram.
  - (b) What does an array processor mean? What are the different SIMD computer organizations?

(c) Vectorizing compilers generally detect loops that can be executed on a pipelined vector computer. Are the vectorization algorithms used by vectorizing compilers suitable for MIMD machine parallelization.

- 4. Attempt any two parts of the following :
  - (a) A hierarchical cache main memory subsystem has following specifications :
    - (i) Cache access time of 50 n sec
    - (ii) Main storage access time of 500 n sec
    - (iii) 80% of request are for read
    - (iv) Hit ratio of 0.9 for read access and for write through scheme is used,

## Determine :

- (A) Average access time of the system considering only memory read cycle
- (B) Average access time of the system both for read and write requests
- (C) Hit ratio taking into considerations the write cycle
  - (1) 100 n sec
  - (2) 180 n sec
  - (3) 0.72 n sec
- (b) What are the different hazards that occur in instruction pipeline and how these are resolved ?
- (c) What is meant by Cache-Coherency ? Explain with the help of a suitable example.

TCS-802

2

TCS-802

Attempt any two parts of the following :

Consider the following reservation table for a four stage pipeline with a clock cycle  $\iota = 20$ ns.

|    | 1 | 2 | 3 | 4 |
|----|---|---|---|---|
| S1 | Х |   |   | Х |
| S2 |   | Х |   |   |
| S3 |   |   | Х |   |

- (i) What are the forbidden latencies and initial collision vector ?
- (ii) Draw the state transition diagram for scheduling the pipeline.
- (iii) List all the simple cycle and greedy cycle.
- (iv) Determine the optimal constant latency and minimal average latency (MAL).
- (v) Determine the throughput of this pipeline. Lower bound on the MAL for this pipeline.
- (b) What are the properties of the Vector Processors ? Explain each component of Vector-Register Processors with diagram.
- (c) Discuss the superscalar and superpipelined processing. Also estimate the performance of superpipelined superscalar processor of degree (m, n).



(a)

5.

-000-