10373

(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID: 0396 Roll No. \square

Abstract

B.Tech. (SEM VIII) EVEN SEMESTER THEORY EXAMINATION, 2009-2010

\section*{DIGITAL MEASUREMENT TECHNIQUES}

Time: 3 Hours
Total Marks : 100

1. Attempt any four parts of the following: ($4 \times 5=20)$
(a) Discuss the advantage and disadvantage of a digital display compared to an analog one.
(b) If the main and Vernier Oscillators have time periods of 10.006 and $10.001 \mu \mathrm{~s}$, respectively, and the time interval to be measured is $1410.05 \mu \mathrm{~s}$. What would be the reading of the main and the vernier counters ? Find the total measurement time.
(c) Explain the measurement of time interval smaller than the clock period.
(d) Using Phase measurement scheme explain Phase measurement at a single low frequency.
(e) Derive a expression for Quality factor of a ringing circuit?
(f) Write a short note on Decibel meter.
2. Attempt any two of the following :
($2 \times 10=20$)
(a) Using block diagram explain the measurement of the ratio of two frequencies and product of two frequency.
(b) Explain the Average Frequency difference Measurement techniques and Applications.
(c) Describe the basic method used for Fast low Frequency Measurement.
3. Attempt any two of the following :
$(2 \times 10=20)$
4. Attempt any two parts of the following: $\quad(2 \times 10=20)$
(a) Draw a block diagram of ADC employing VTC and VFC.
(b) Draw a block diagram for digital ramp ADC and successive approximation ADC. In a 6 bit successive approximation converter, if the full scale value represents 1 v and the unknown voltage $\mathrm{vx}=55 / 64 \mathrm{v}$, find the various vn Plot un versus n.
(c) Write short notes on :
(i) Sampling theorem and Quantization
(ii) Time Division Multiplexing.
5. Attempt any two of the following :
(a) Realize 2 bit inverting and non inverting DAC with a minimum number of components making use of the programmable gain amplifier.
(b) Realize 16 bit DACs with the minimum spread and the minimum total resistance. Draw a weighted reference voltage DACs.
(c) Explain minimum total resistance DAC realization. Design 4 bit DAC that have the least possible spread and the least number of resistors.
