(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 0148 Roll No.

B.Tech.

(SEM. VIII) THEORY EXAMINATION 2010-11 ADVANCE COMPUTER ARCHITECTURE

Time: 3 Hours Total Marks: 100

Note: (1) Attempt all questions.

- (2) All questions carry equal marks.
- (3) Assume suitable data wherever necessary.
- 1. Attempt any two parts of the following:
 - (a) Explain Flynn's classification of computer architecture and how it is different from Feng's classification?
 - (b) In the following program segment, detect if parallelism is possible using Bernstein's conditions:

$$S_i : A = B * C ; A \leftarrow B \times C$$

$$S_s : C = D * E ; C \leftarrow D * E$$

$$S_{\tau}: G=F+G; G \leftarrow F+G$$

$$S_4$$
: $H = G + A$; $H \leftarrow G + A$

(c) Draw a 16 bit omega network using 2×2 switches as building block.

Attempt any two parts of the following:

- (a) A nonpipeline system takes 50 ns to process a task. The same task can be processed in a 6 segment pipeline with a clock cycle of 10 ns. Determine the speed up ratio of the pipeline for 100 tasks. What is the maximum speed-up that can be achieved?
- (b) What are pipeline hazards? Discuss various branch prediction strategies with the help of examples.
- (c) What do you understand by control flow and data flow computers? State advantages and disadvantages of data flow computing?

Attempt any two parts of the following:

- (a) A block set associative cache consists of a total 64 blocks divided into four-block sets. The main Memory contains 4096 blocks. Each block consists of 128 words.
 - (i) How many bits are there in Main Memory address?
 - (ii) How many bits are there in each of TAG, SET and WORD fields of Main Memory.
- (b) Suppose in a memory organisation, cache miss rate is 5%. The cache memory has cycle time of 20 ns whereas main memory has cycle time of 150 ns. Calculate the average cycle time.

- (c) Explain the temporal locality, spatial locality and sequential locality associated with program/data access in a memory hierarchy?
- 4. Attempt any two parts of the following:
 - (a) Consider the following reservation table for a four stage pipeline with a clock cycle τ = 20 ns.

	1	2	3	4	5.	6
S,	x		10 - 45	100	117	x
S ₂		X	W.	x	4.0	
S ₃	inggy.		Х	0(1)		0
S ₄		an .		Х	X	

- (i) What are forbidden latencies and initial collission vector?
- (ii) Determine MAL associated with the shortest greedy cycle.
- (b) In a given architectural configuration of SIMD computers, discuss how data -routing mechanisms are implemented.
- (c) Discuss the superscalar and superpipelined processing. Also estimate the performance of superpipelined superscalar processor of degree (m, n).

- 5. Attempt any two questions of the following:
 - (a) Discuss various models of computation in PRAM (Parallel Random Access Machine) model. Also explain how theoretically parallel algorithms are analysed.
 - (b) Devise a PRAM algorithms to sort a given array of an element using bubble sort.
 - (c) Discuss matrix multiplication on mesh. Give an algorithm that uses n × n processors arranged in a mesh configurations. Also find the time complexity of the algorithm.

Ti

1.