(Following Paper ID and Roll No. to be filled in your Answer Book)							
PAPER ID: 0395	Roll No.	Ш	Ш		П		

B. Tech.

(SEM. VIII) THEORY EXAMINATION 2010-11 OPTIMAL CONTROL

Time: 3 Hours

Total Marks: 100

Note: (1) Attempt all questions.

- (2) All questions carry equal marks.
- 1. Attempt any two parts:

(10×2=20)

- (a) What is the optimal control problem? How is it formulated? Explain with an example.
- (b) Enlist the procedure followed in dynamic programming.

 What are the disadvantages of dynamic proring?

 Explain.
- (c) What is the two-point boundary value
- 2. Attempt any two parts:
 - (a) Figure 1 shows the optime' servo system. Both th

θ and angular vel

LEGITA STATUS TIL

utrol

TIC801/RFW-21937

2300

Fig.1

It is desired to regulate the angular position to a unit-step function θ_r . Find the optimum values of the gains K_1 and K_2 that minimize

$$J = \int_0^{\infty} \left\{ \left[x_1 - \theta_r \right]^2 + u^2 \right\} dt$$

- (b) Explain the discrete time linear state regulator and compare it with the continuous time linear state regulator.
- (c) What is the Minimum-time control fo Linear Time Invariant systems? Explain.

Attempt any two parts:

(10×2=20)

- (a) What are Stochastic processes? Give examples. How a control problem is classified between stochastic and deterministic?
- (b) Consider the combined estimation and control problem for the following system:

$$\dot{x}(t) = -0.5x(t) + u(t) + w(t)$$

$$y(t) = x(t) + v(t)$$

$$Q = 6$$
, $R = 1$, $P_0 = 0$, $t_0 = 0$

Find the optimal control law that minimizes the following performance index:

$$J = E\left\{\frac{1}{2}x^{2}(2) + \frac{1}{2}\int_{0}^{2}\left\{2x^{2}(t) + u^{2}(t)\right\}dt\right\}$$

Also give a suitable scheme for the implementation of the above control.

- (c) Explain the Stochastic Optimal Linear Regulator.
- 4. Attempt any two parts:

 $(10 \times 2 = 20)$

- (a) What do you mean by a Microprocessor ? Explain its architecture.
- (b) Explain the Microprocessor control of a control system with the help of an example.
- (c) What is digital signal processing? Explain. What are its advantages and disadvantages?
- 5. Attempt any two parts:

 $(10 \times 2 = 20)$

- (a) What is quantization? What are its effects? On what factors does the quantization error depend? Explain.
- (b) What do you mean by Pole placement? Explain the closed loop pole placement. What effect does it have on the transient performance of the control system?
- (c) Discuss the time delays in microprocessor based control systems.