Printed Pages—3 ECE063	
(Following Paper ID and Roll No. to be filled in your Answer Book)	
PAPER ID : 2856 Roll No.	
B. Tech.	
(SEM. VIII) THEORY EXAMINATION 2011-12	
GROUND WATER MANAGEMENT	
Time : 3 Hours Total Marks : 100	
Note: (1) Attempt all questions.	
(2) Each question carries equal marks.	
(3) Assume any missing data suitably.	
1. Attempt any <i>four</i> parts of the following : $(5 \times 4 = 20)$	
(a) Explain with the help of a diagram the hydrologic cycle.	
(b) Explain the following :	
(i) Aquifer	
(ii) Aquiclude	•
(iii) Aquifuge.	
(c) A tube-well penetrates fully an unconfined aquifer.	
Calculate the discharge from the tubewell under the	
following conditions :	X
Diameter of the well $= 30$ cm	
Draw-down = 2 m	3
Effective length of strainer under the above draw-down = 10 m	
Coefficient of permeability of aquifer = 0.05 cm/sec	•
Radius of zero draw-down = 300 m .	
(d) Derive an expression for discharge from a well fully penetrating a confined aquifer.	
ECE063/PUR-40255 1 [Turn Over	

۶ I

- (e) Explain the method of determining the coefficient of transmissibility, of a confined aquifer by pumping out test.
 What do you mean by storage coefficient ?
- (f) Write short notes on :
 - (i) Well losses
 - (ii) Specific capacity of well
 - (iii) Interference among wells.
- 2. Attempt any *four* parts of the following :

(5×4=20)

- (a) Write the assumptions for steady flow condition for confined and unconfined aquifer with the help of neat sketches and expressions.
- (b) State and discuss assumptions and limitations of Dupit's Theory.
- (c) Describe in brief various methods of developing a tubewell. What do you mean by recuperation test ?
- (d) Design a tube-well for the following data :
 - (i) Yield required = 0.08 cumec
 - (ii) Thickness of the confined aquifer = 30 m
 - (iii) Radius of circle of influence = 300 m
 - (iv) Permeability coefficient = 60 m/day
 - (v) Draw-down = 5 m.
- (e) Distinguish between fully and partially penetrating artesian gravity wells with expressions and sketches.
- (f) Explain with suitable sketches the collector wells and infiltration galleries.
- 3. Attempt any *two* parts of the following : $(10 \times 2=20)$
 - (a) Design an open well in fine sand to give a discharge of 0.005 cumec when worked under a depression head of 3 m. Take the value of the specific yield for fine sand as 0.05 m³/hour per sq-m of area, under unit depression head.

ECE063/PUR-40255

2

- (b) Explain the salient features of advantages and disadvantages of well irrigation over canal irrigation.
- (c) Write a short note on maintenance of wells. What are the factors important for maintenance of wells?

4. Attempt any *two* parts of the following : $(10 \times 2=20)$

- (a) What are various constituents present in ground water ? Explain why turbidity of water is an important consideration in public water supply. Define SAR.
- (b) Explain the salient features of modelling of ground water resource projects. Describe the optimization and simulation models.
- (c) What do you mean by artificial discharge and recharge of ground water ? Explain the term ground water drainage.
- 5. Attempt any *two* parts of the following : $(10 \times 2=20)$
 - (a) Write short notes on :
 - (i) Ground Water Budgeting
 - (ii) Surface and sub-surface investigation of ground water.
 - (b) How the GIS and remote-sensing techniques are applied in ground water management ?
 - (c) Explain the roof-top rain water harvesting and recharge system. How they are useful in conservation of water ?

3

ECE063/PUR-40255

2

1725

1