\square
Roll No.

B.TECH
 (SEM VIII) THEORY EXAMINATION 2018-19
 ADVANCED FOUNDATION DESIGN

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

a. Define soil resistivity.
b. What do you understand by soil investigations?
c. Define shallow foundation .
d. Define Hansen's bearing capacity equations with usual notations.
e. What do you understand by consolidation settlements in cohesive soils?
f. What do you understand by bearing capacity of soil?
g. What are expensive soils?
h. Define under reamed piles.
i. Define method of slice.
j. Which load taken in machine foundation?

SECTION B

2. Attempt any three of the following:
a. What are the purpose of site investigation? Define stages in sub-surface exploration.
b. A normally consolidated clay stratum of 3 m thickness has two permeable layers at its top and bottom. The liquid limit and the initial void ratio of the clay are 36% and 0.82% respectively, while the initial overburden pressure at the middle of clay layer is $2 \mathrm{~kg} / \mathrm{cm}^{2}$. Due to the construction of a new building this pressure increases by $1.5 \mathrm{~kg} / \mathrm{cm}^{2}$. Compute the probable consolidation settlement of the building.
c. A smooth RCC pile of 40 cm diameter and an angle of internal friction of 25°. Determine the safe load which can be carried by the pile. Given for 15 m length is driven into a deep stratum of dry, loose sand having a unit weight of $1.6 \varphi=25^{\circ}$, Vesic's bearing capacity factor $\mathrm{N}_{\mathrm{q}}=5.3$
d. What do you understand by expansive soil? What are condition of the alteration of soil ?
e.

Derive an expression for the factor of safety of an infinite slope in a cohesion lees soil.

SECTION C

3. Attempt any one part of the following:

$$
10 \times 1=10
$$

a. A long strip footing width 2 m carries a load of $400 \mathrm{kN} / \mathrm{m}$. Calculate the maximum stress at a depth of 5 m below the center line of footing. Compare the result with $2: 1$ distribution method.
b. Describe various methods of drilling holes for sub-surface investigations.
4. Attempt any one part of the following:

10x1=10
a. A square footing of 2 mx 2 m size is subjected to a gross vertical load of 180 t . The depth of foundation is 1 m . The foundation soil consists of a deposit of dense having a bulk density of $1.85 \mathrm{t} / \mathrm{m}^{3}$ and an angle of internal friction of 36°. Determine the factor of safety against shear failure.
b. Discuss the effects of water table on the bearing capacity of the soils.
5. Attempt any one part of the following: $10 \times 1=10$
a. Discuss the various types of piles which are used in the construction work, on the basis of their structural characteristics with their advantages and disadvantages.
b. An RCC pile of 18 m overall length is driven into a deep stratum of soft clay having an unconfined compressive strength of $3.5 \mathrm{t} / \mathrm{m}^{2}$. The diameter of pile is 30 cm . determine the safe load that can be carried by the pile with a factor of safety of 3.0
6. Attempt any one part of the following:

$$
10 \times 1=10
$$

a. Find out the expression for finding the capacity of piles for single bulb and double bulb under reamed piles.
b. Determine the natural frequency of a machine foundations having a base area $2 \mathrm{~m} \times 2 \mathrm{~m}$ and a mass of 15 kg , including the mass of machine, taking $\mathrm{C}_{\mathrm{u}}=4 \times 10^{4} \mathrm{kN} / \mathrm{m}^{3}$.
7. Attempt any one part of the following:

10x1=10
a. A slope of sandy soil extending to great extent is inclined at 20° to be horizontal. Determine the factor of safety (i) the slope is dry (ii) seepage occurs parallel to slope .The angle of shearing resistance of sand is 30° and the saturated unit weight is $19.7 \mathrm{kN} / \mathrm{m}^{3}$.
b. Define force transmissibility. Find out expression for ratio of the force transmitted to the applied force.

