Printed Pages:03 Sub Code:KMB206						
Paper	Id: 270246 Roll No.					
	MBA (SEM-II) THEORY EXAMINATION 2018-19 OUANTITATIVE TECHNIOUES FOR MANAGEMENT					
Time:	3 Hours Total I	Marks: J	100			
Note:	1. Attempt all Sections. If require any missing data; then choose suitably. SECTION A					
1.	1. Attempt <i>all</i> questions in brief.					
		Marks	CO			
a.	What are the tools of operation research?	2	1			
b.	Give some uses of operation research.	2	1			
c.	What are the applications of Linear Programming in Management?	2	2			
d.	What do you mean by Initial Basic Feasible solutions of a transportation problem?	2	2			
e.	Distinguish between Assignment and Transportation problem.	2	3			
f.	What do you mean by saddle point?	2	3			
g.	Define a sequencing problem.	2	4			
h.	What do you mean by arrival rate and service rate in Queuing theory?	2	4			
i.	What is the importance of replacement?	2	5			
j.	Explain time estimates in PERT.	2	5			
-	SECTION B		Nº.			
2	Attempt any three of the following.	(γ			
2.	Attempt any <i>three</i> of the following:	5	+			
	105	Marks	CO			
a.	Discuss the significance and scope of Operation Research in business and industry.	10	2			
b.	A company produces two types of presentation goods A and B that	10	1			
	require gold and silver. Each unit of type A requires 3 grams of silver					
	and I gram of gold while that of B requires I grams of silver and 2					
	grams of golds. The company can procure 9 gms of silver and 8 gms of sold. If each unit of time A brings a grafit of Ba. 40 and that of time B					
	gold. If each unit of type A brings a profit of Rs. 40 and that of type B					
	produced to maximize the profit Indicate the feasible region on a graph					
	paper.					
c.	For the following game find optimal strategies of A and B and value of	10	3			
	the game using principle of dominances.					
	Player B					
	$B_1 B_2 B_3 B_4$					
	$A_1 \begin{bmatrix} 21 & 22 & 23 & 21 \\ 6 & 8 & 9 \end{bmatrix}$					
	Player A A ₂ A_3 Q 10					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
d	At a service centre sustance arrive at the rate of 10 new hour and are	10	1			
u.	At a service centre customers arrive at the rate of 10 per nour and are served at the rate of 15 per hour. Their arrival follows poisson	10	4			
	distribution and service is exponentially distributed. Find the average					

length and average waiting time in the system.
e. Why does the problem of replacement arises? What is individual & 10 5 group replacement?

SECTION C

3. Attempt any one part of the following: Marks CO Discuss the historical background of Operations Research. a. 10 1 b. Discuss briefly the limitations of operation research techniques. 10 1 4. Attempt any *one* part of the following: CO Marks Max $Z = 30x_1 + 40x_2 + 20x_3$ 10 2 a. s.t. $10x_1 + 12x_2 + 7x_3 \le 10,000$ $7x_1 + 10x_2 + 8x_3 \le 8000$ $x_1 + x_2 + x_3 \le 1000$ Where, $x_1, x_2, x_3 \ge 0$ b. A Cement factory manager is considering the least way to transport 10 2 cement from his three manufacturing centres P, Q, R to depots A, B, C, D and E. The weekly production and demands alongwith transportation costs are given below. To A1755.241.2 Supply From С А В D E (Tons) Р 4 3 1 4 4 60 2 3 2 2 Q 3 35 5 2 3 4 R 4 40 Demand 20 (Tons) 30 135 22 45 18 What should be the distribution programme? 5. Attempt any one part of the following: The XYZ Co. has 5 jobs to be done and 5 men to do these jobs. The no. 3 10 a. of hours each man would like to accomplish each job is given below: Men Р 0 L Μ Ν 4 6 1116 9 А 5 В 8 16 19 9 Jobs 9 С 13 21 2113 6 9 D 11 7 E 11 11 16 26

Find the optimal schedule of the above problem.

b. Explain the theory of dominance in the solution of rectangular game. 10 3

6. Attempt any *one* part of the following:

a. Six jobs are performed first over machine I and then over machine II. 10 The order of the completion of the jobs has no significance. Find the sequence of the jobs that minimizes the total elpased time & Also calculate the total clapsed time. The time of each job on each machine is given below.

Job		1	2	3	4	5	6
Time in	Machine I	4	8	3	6	7	5
Hours	Machine II	6	3	7	2	8	4

b. Explain the important assumptions of a queuing model.

7. Attempt any *one* part of the following:

a. A transport com. buys road tankers costing Rs. 50,000 each. From the 10 5 data below advise management when a tanker should be replaced.

Year	1	2	3	4	5	6
Operating Cost (Rs.)	7500	8000	8500	9000	10000	12250
Resale Price (in Rs.)	45000	40,500	37,500	36000	34500	33250
S						

b. Calculate average expected time, and draw network for a project with 10 the following activity times.

0			
Activity	Op. time (in hrs.)	Time (in Hrs.)	Mixed Lotelly time (in hour)
2–4	1.0	5.0	3.0
2–6	1.0	7.0	4.0
4–8	4.0	16.0	7-0
6–8	1.0	5.0	1.5
8-10	1.5	14.5	3.5

Also calculate the variance and standard derivation of the project.

08-1124

KMB206

Marks CO

10 4

Marks

55.24 2 5

CO