

Printed Pages: 4 MBA – 441

(Following	Paper ID an	nd Roll No. to	o be	filled in	your	Answer	Book)
PAPER ID	: 1464	Roll No.					

M. B. A.

(SEM. IV) EXAMINATION, 2006-2007

DATABASE MANAGEMENT SYSTEM

Time: 3 Hours] [Total Marks: 100

Note: Attempt all questions.

- 1 Attempt any **two** parts of the following: 5×2
 - (a) Define the following terms:
 - (i) Data model
 - (ii) Referential integrity
 - (iii) External schema
 - (iv) Internal schema
 - (v) Primary key.
 - (b) When is the concept of weak entity used in data modelling? Define the terms owner entity, weak entity, identifying relationship, partial key.
 - (c) A university database contains information about professors (identified by social security number) and courses (identified by courseid). Professors teach courses; each of the following situations concerns the Teaches relationship set. For each situation draw an ER diagram.
 - (i) Professors can teach the same course in several semesters and each offering must be recorded.

V-1464] 1 [Contd...

- (ii) Professors can teach the same course in several semesters, and only the most recent such offering needs to be recorded.
- (iii) Every professor must teach some course.
- (iv) Every professor teaches exactly one course.
- (v) Every professor teaches exactly one course and every course must be taught by some professor.
- 2 Attempt any two parts of the following: 3+3+4
 - (a) Specify the following queries in relational algebra:

Supplier (sid, sname, address)

Part (sid, pname, color)

Catalog (sid, pid, cost)

- (i) Find names of suppliers who supply some red or green part.
- (ii) Find the sids of suppliers who supply every part.
- (iii) Find the sids of suppliers who supply red and green parts.
- (b) List the operations of relational algebra and the purpose of each.
- (c) Let the following relational schema be 3+3+4 given:

Employee (SSN, name, age, dno)

salary (SSN, salary)

work on (Project#, SSN)

Project (Project#, project_name, location)

For each of the following queries give an

V-1464] 2 [Contd...

	expre	ession in SQL:				
	(i)	Display the names of projects at "delhi".				
	(ii)	Find the project_name of employee whose salary is greater than 10000.				
	(iii)	Retrieve the name and SSN of employees working on Project#A100.				
Attm	ept ar	ny two parts of the following:	5×2			
(a)	Defin	e the following terms:				
	(i)	Multivalued dependency				
	(ii)	Functional dependency				
	(iii)	Second Normal form.				
	(iv)	Lossless decomposition				
	(v)	Dependency preservation.				
(b)	Consider the following relation: 2x5					
	Book (book_title, authorname, book_type, listprice, author_affiliation, publisher)					
	Suppose the following functional dependencies exist:					
	book_title → publisher, book_type					
	book_type → listprice					
	authorname → author_affiliation.					
	(i)	What normal form is the relation in? Explain your answer.				
	(ii)	Apply normalization until you cannot decompose the relations further. State the reasons behind each decomposition				

How does Boyce-Codd normal form differ

3

from 3NF? Why is it considered stronger from

10

[Contd...

3

(c)

V-1464]

of 3NF?

4	Atte	empt any two parts of the following:	2×5
	(a)	Explain the following terms:	
		(i) Deadlock detection and recovery	
		(ii) Shadow paging.	
	(b)	Define serializability. Differentiate conflict and view serializability.	10
	(c)	State with examples desirable properties of a transaction. What is the system log used for	10 or?
5		te short notes on any two parts of the owing:	
	(a)	Two phase locking	10
	(b)	Need for concurrency control	10
	(c)	Multiversion techniques.	10