Printed Pages: 6	356	NMCA-115
(Following Paper I	D and Roll No. to Answer Book	
Paper ID : 214105	Roll No.	

MCA

(SEM. I) THEORY EXAMINATION, 2015-16 DISGITAL LOGIC DESIGN

[Time:3 hours]

[Total Marks:100]

Note: Attempt questions from all Sections as per directions.

Section-A

1. Attempt all parts. Write answer of each part in brief.

(10x2=20)

- (a) The solutions to the quadratic equation $x^2-11x+22=0$ are x=3 and x=6. What is the base of the numbers.
- (b) List all the minterms for three varible x, y, and z?
- (c) Define multiplexer? Draw a logic diagram of 4×1 multiplexer.
- (d) Write the truth- table of an octal-to binary priority encoder.

- Explain the race condition in the context of SR (e) flip-flop?
- Show that the characteristic equation for the complement output of JK flip-flop is Q'(T+1) = J'Q' + KQ.
- Explain the difference between EPROM and (g) EEPROM.
- How many address line and input-output data lines (h) are required for memory unit 8K×8?
- Discuss how ASM chart differs from conventional (i) flow chart?
- Define critical race and non-critical race. (j)

Section-B

Attempt any five questions from this section. (10x5=50)

- 2. Perform the following conversions as directed: (a)
 - $(64CD)_{16} \rightarrow (?)_{8}$ (i) (1X5)
 - (ii) $(DADA.B)_{16} \rightarrow (?)_{10}$
 - (iii) $(10110.0101)_2 \rightarrow (?)_{10}$
 - (iv) $(268.75)_{16} \rightarrow (?)_8$
 - (v) $(867)_{16} \rightarrow (?)_{BCD}$

- (i) Represent(-89)₁₀ in 2's complement representation using 8-bits.
- (ii) Find the decimal equivalent of binary (10111011)₂. Assume the given number in 1's complement representation.
- 3. (a) Simplify the Boolean function f together with don't care condition d in SOP and POS:

$$f(w,x,y,z)=\sum (0,1,2,3,7,8,9,10)$$

$$d(w,x,y,z)=\sum (5,6,11,15)$$

- (b) Define binary adder. Draw the logic circuit of a 4-bitbinary adder-subtractor and explain its working.
- 4. A majority circuit is a combinational circuit whose output is equal to 1 if the input variables have more 1's than0's. The output is 0 otherwise. Design a 3- input majority circuit by finding the circuit's truth-table, Boolean equation, I and a logic diagram.
- 5. list the capabilities of general shift register? Draw the logic circuit of "4-bit bidirectional shift register with parallel load" and explain its working?

2200

(3)

P.T.O.

 $(2\frac{1}{2}x2)$

- 6. Design a 2 bit cout-down couter. When inptu x=0, the state of the flip-flop does not change. When x=1, the state sequences is 11,10,01,00,11 and repeat. Draw the state diagram.
- 7. (a) Draw a PLA circuit to implement the functions $F_1 = A'B + AC' + A'BC'$ $F_2 = (AB + AC + BC)'$
 - (b) Expalin decision box and conditional box used in ASM chart.
- 8. (a) Derive the ROM programming table for the combinational circuit that squares a 4-bit number.

 Minimize the number of product terms.
- 9. (a) Draw the logic configuration of four inputs and four outputs PAL and expalin it.
 - (b) Discuss different types of hazards in combinational and sequential circuits.

Section-C

Attempt any two questions from this section. (15x2=30)

10. (a) Find all the prime implicants for the following boolean functions, and determine which are the essential prime implicants. (5)

$$f(w,x,y,z)=\sum (0,2,4,5,6,7,8,10,13,15)$$

- (b) Implement full-subtrator circuit using multiplexer of suitbale size. (5)
- (c) Design a Binary multiplier circuit that multiplies two binary numbers, where first number is of 4-bits and second number is of 3 bits. Use AND gates and binary address. (5)
- 11. (a) A PN flip-flop has four operation: clear to 0, no change, complement, and set to 1, when inputs P and N are 00, 01,10 and 11, respectively. (2×4)
 - (i) Tabulate the characteristic table.
 - (ii) Derive the characteristic equation.
 - (iii) Tabulate the excitation table.
 - (iv) Show how the PN kflip-flop can be converted to a Dflip-flop.
 - (b) The following is a truth table of a three-input, four-output combinational circuit:

	Inputs				
X	у	z			
0	0	0			
0	0	1			
. 0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Outputs				
A	В	С	D	
0	- 1	0	0	
1	1	1	1	
1	0	1	1	
0	1	0	1	
1	1	1	0	
0	0	0	1:	
1	0	1	0	
0	1	1	1	
	0 1 1 0 1 0	A B 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0	0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1	

Tabulate the PAL programming table for the circuit, and mark the fuse map in a PAL diagram. (7)

- 12. (a) Draw the block digram of asynchronous sequenntial circuit and expalin its working. (5)
 - (b) An asynchronous sequential circuit has two internal states and one output. The excitation functions and output function of the circuit are as follows:

$$Y_1 = a'b + bx$$

 $Y_2 = ay + x$
Output function
 $Z = a + y$

- (i) Derive the logic diagram of the circuit. (5)
- (ii) Derive the transition table and output map. (5)

—x—