Paper Id: \qquad Roll No: \square

MCA
 (SEM-I) THEORY EXAMINATION 2019-20
 DISCRETE MATHEMATICS

Time: 3 Hours
Total Marks: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.
SECTION A

1. Attempt all questions in brief.
a. Define the Inverse function with example.
b. Solve the recurrence relation: $a_{n}-5 a_{n-1}+6 a_{n-2}=0$.
c. Write down all Possible subsets of $A=\{2,3\}$ and $B=\{a, b, c\}$.
d. Find two incomparable elements in the poset:($\{1,2,4,6,8\}$)
e. State complement axiom of Boolean algebra.
f. Write down the procedure for testing the validity of an Argument using Truth table.
g. Define the Complete Lattice with example.

SECTION B

2. Attempt any three of the following:
$7 \times 3=21$
a. If a relation R is defined as: " $R=\left\{(a, b) \in R^{2}(a-b) \leq 3\right\}$ ". Then determine whether relation R is reflexive, symmetric, antisymmetric and transitive.
b. Let L be the set of all factor of 30 and let $/ / /$ be the divisibility relation on L.Then show that ($\mathrm{L}, \quad / \mathrm{l}$ ') is a lattice.
c. State and Prove the De-Morgan's Laws of Boolean Algebra.
d. Consider $p:$ He is intelligent', q : He is tall be two propositions. Write each of the following statement in symbolic form using p and q :
i) He is tall but not intelligent.
ii) He is neither tall nor intelligent.
iii) He is intelligent or he is tall.
e. Find the minimum number of students in a class to be sure that four out them are born in the same month.

SECTION C

3. Attempt any one part of the following:

$$
7 \times 1=7
$$

(a) Prove by mathematical induction : $n^{4}-4 n^{2}$ is divisible by 3 for all $n \geq 2$
(b) Prove the Associative and Commutative laws for set theory.
4. Attempt any one part of the following:
$7 \times 1=7$
(a) Define the "Distributive Lattice". Prove that in a Distributive Lattice, if an element has a complement then this complement is unique.
(b) If $\mathrm{A}=\{1,2,3,4,6,8,12,16,24,48\}$ be ordered by the relation "a divides b ". Then draw the Hasse diagram.
5. Attempt any one part of the following:
(a) Draw Karnaugh map (K-map) and simplify the following Boolean expression:
$F=A B C+A B C^{\prime}+A^{\prime} B C^{\prime}+A^{\prime} B^{\prime} C^{\prime}$.
(b) In the Boolean algebra $(B,+, ., \prime, 0,1)$ express the Boolean function:
$f(x, y)=\left(x+y^{\prime}\right)\left(x^{\prime}+y\right)\left(x^{\prime}+y^{\prime}\right)$ In its Disjunctive normal form.

Paper Id:
214103
Roll No: \square
6. Attempt any one part of the following:
(a) Show that $\sim r$ is a valid conclusion from the premises: $p \rightarrow \sim q, r \rightarrow p, q$
i) with truth table.
ii) without truth table.
(b) State identity law and De-Morgan's law of algebra of proposition and prove the Distributive law of algebra of proposition.
7. Attempt any one part of the following:
$7 \times 1=7$
(a) Solve the following recurrence relation:
$a_{n}-4 a_{n-1}+4 a_{n-2}=0$ with initial condition $a_{0}=1$ and $a_{1}=6$
(b) Find the number of possible ways in which the letters of the word COTTON can be arranged so that the two T's do not come together.

