Department of Electrical & Electronics Engineering

2020-21

Course Outcomes (CO) mapping with

Programme Outcomes

(PO)

and

Programme Specific Outcomes (PSO)

GHAZIABAD

IMS Engineering College, Ghaziabad

Institute Vision and Mission

Vision

Our vision is to impart Vibrant, Innovative and Global Education to make IMS the world leader in terms of Excellence of Education, Research and to serve the nation in the 21st century.

Mission

- To develop IMSEC as a Centre of Excellence in Technical and Management Education.
- To inculcate in its students the qualities of Leadership, Professionalism, Executive Competence and Corporate understanding.
- To imbibe and enhance Human Values, Ethics and Morals in our students.
- To transform students into Globally Competitive Professionals

Department Vision and Mission

Vision

Vision of Electrical and Electronics Engineering Department is to produce a dynamic, creative, technically sound and globally competitive engineer that can face the challenges of modern industry and serve the society at a global level.

Mission

- To provide the students globally accepted technical education in electrical and electronics engineering for making them technically skilled and motivated professionals in order to comply the needs of Society and modern Industries.
- To provide research oriented atmosphere among the students so that they imply their thoughts and knowledge in implementing live industrial projects.
- Emphasis on creation of excellence in applications through knowledge sharing, value addition programmes, beyond syllabus programmes, industry-academia interaction, interdisciplinary research and personality development programmes.
- To encourage faculties and students for higher studies and research for knowledge enhancement and hence become successful professionals in the society.

Program Outcomes

Engineering Graduates will be able to:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

GHAZIABAD

IMS Engineering College, Ghaziabad

Program Educational Objectives

- 1. To produce proficient electrical and electronics engineering graduates with a strong foundation in design analytics and problem solving skills for successful professional careers in industry, research and public service.
- 2. To prepare the students to excel for self and societal development through higher studies and research activities.
- 3. To inculcate in students excellent professionalism, ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach and an ability to relate engineering issues to broader social context.
- 4. To provide students with an academic environment aware of excellence and the life-long learning needed for a successful professional career as an engineer, scientist, technocrat, administrator and an entrepreneur.
- 5. To train students with advance technical skills so as to comprehend, analyze, design and create innovative products and solutions for the real life problems.

Program Specific Outcomes (PSO)

- 1. Graduates shall have an ability to apply fundamental knowledge of mathematics, applied science, engineering and management for the solution of electrical engineering problems.
- 2. Graduates will be able to analyse and conduct investigations on complex engineering activities to arrive at valid conclusions.
- Graduates shall have an ability to apply learned principles to the design, analysis, development and implementation of advanced electrical systems.

Evaluation Scheme B.Tech 2nd Year (Electrical & Electronics Engineering)

				SEM	ESTE	R- III							
Sl.	Subject	Subject	I	Period	ls		Evaluat	ion Schei	ne	End Seme	ster	Total	Credit
No.	Codes	•	L	T	P	CT	TA	Total	PS	TE	PE		
1	KOE031-38/ KAS302	Engg. Science Course/Maths IV	3	1	0	30	20	50		100		150	4
2	KAS301/	Technical Communication/	2	1	0	30	20	50		100		150	3
	2 KVE301	Universal Human values	3	0	0	30	20	30		100		150)
3	KEE301	Electromagnetic Field Theory	3	1	0	30	20	50		100		150	4
4	KEE302	Electrical Measurements & Instrumentation	3	1	0	30	20	50		100		150	4
5	KEE303	Basic Signals & Systems	3	0	0	30	20	50		100		150	3
6	KEE351	Analog Electronics Lab	0	0	2				25		25	50	1
7	KEE352	Electrical Measurements and Instrumentation Lab	0	0	2				25		25	50	1
8	KEE353	Electrical Workshop	0	0	2				25		25	50	1
9	KEE354	Mini Project or Internship Assessment*	0	0	2			50				50	1
10	KNC301/ KNC302	Computer System Security/Python Programming	2	0	0	15	10	25		50			0
11		MOOCs (Essential for Hons. Degree)											
		Total										950	22

^{*}The Mini Project or internship (3-4 weeks) conducted during summer break after II semester and will be assessed during III semester.

Sub Code	KAS-302
Sub. Name	Mathematics- IV

					CC	URSE	OUT	COME	S					
CO1	The	idea o	f partia	al differ	entiatio	on and	types o	f partial	differ	ential	equat	ions		
CO2		idea c transm			n of se	econd p	partial (differen	tial eq	uation	s, wave	e , heat	equation	
CO3				of sta		includ	ding m	neasures	of c	entral	tender	ncy, co	orrelation,	
CO4				robabili butions	•			ables a	nd var	rious o	liscrete	and co	ontinuous	
CO5					•	_	-	oles, hyp	othesi	s testii	ng and s	statistic	al quality	
	control, control charts and their properties. CO-PO Matrix													
Cour		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
СО	1	2	2	1	1	2	3				1	1	2	
СО	2	1	1	2		2	3	2	2					
CO	3		1	2	1	2	3	2		2	1	1		
CO	4	1		1	1	1		2	2					
CO	5	1	2	1		1		3	3		1	1	2	
Av	g	1	1.20	1.40	1	1.80	3	2.2	2.2	2	1	1	2	
				(CO-PS	O Mat	rix							
	C	Os		P	SO1		PSC			PSO:	3			
	C	01			3		2			1				
	C	O2			2		2			1				
	CO3				2					2				
	C	O4			1		1			1				
	C	O5			1		1			2				
	A	vg			2		1.5	5		1.40				

Sub Code	KAS-301
Sub. Name	Technical Communication

					CO	URS	E OUT	COME	S					
CO1							erstand place a			and o	objectiv	e of	Technic	al
CO2				lize the			iting for	the pu	rposes	of Te	chnical	Comm	unicatio	n
CO3		dents verse auc			inputs	by pr	esentati	on skill	ls to e	nhance	e confi	dence i	n face	of
Technical communication skills will create a vast know-how of the application of the learning to promote their technical competence.													ne	
CO5				them to e-dynan		ite the	ir effica	acy as f	luent o	& effic	cient co	ommuni	cators b	Эy
						CO-	PO Ma	trix						
Course Outcome PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11							PO12	;						
СО	1				1		3				2			
СО	2	1					3	2	2					
СО	3				1		3	2		2				
CO	4	1			1			2	2					
CO	5							3	3				2	
Av	g	1	0	0	1	0	3	2.2	2.2	2	0	0	2	
					(CO-PS	SO Mat	rix						
	C	Os		P	SO1		PSC)2		PSO3	3			
	C	O1			3		2			1				
	C	O2			2		2			1				
	C	O3			2		1			1				
	C	O4			1		1			1				
	C	O5			1		1			1				
	A	vg			2		1.	5		1				

Sub Code	KEE-301
Sub. Name	Electromagnetic Field Theory

	COURSE OUTCOMES	Bloom's Level
CO1	Apply different coordinate systems and their application in electromagnetic field theory, establish a relation between any two systems and also understand the vector calculus.	K ₃
CO2	Understand the concept of static electric field. Understand the concept of current and properties of conductors. Establish boundary conditions and to calculate capacitances of different types of capacitors	K ₄
CO3	Understand the concept of static magnetic field, magnetic scalar and vector potential	K ₄
CO4	Understand the forces due to magnetic field, magnetization, magnetic boundary conditions and inductors.	K ₄
CO5	Understand displacement current, time varying fields, propagation and reflection of EM waves and transmission lines.	K ₃

	CO-PO Matrix														
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	3	3	2	1						3			
CO2	3	3	3	2	2							2			
CO3	3	3	3	2	2							2			
CO4	3	3	3	3	2							1			
CO5	3	3	3	2	3				2	1		3			
Avg	3.00	3.00	3.00	2.40	2.20	1.00			2.00	1.00		2.20			

CO-PSO Matrix												
COs	PSO1	PSO2	PSO3									
CO1	3	3	2									
CO2	3	3	2									
CO3	3	2	1									
CO4	3	3	2									
CO5	3	2	1									
Avg	3.00	2.60	1.60									

Sub Code	KEE-302
Sub. Name	ELECTRICAL MEASUREMENTS & INSTRUMENTATION

	COURSE OUTCOMES	Bloom's Knowledge Level
CO1	Evaluate errors in measurement as well as identify and use different types of instruments for the measurement of voltage, current, power and energy.	K1
CO2	Display the knowledge of measurement of electrical quantities resistance, inductance and capacitance with the help of bridges.	K2
CO3	Demonstrate the working of instrument transformers as well as calculate the errors in current and potential transformers.	K2
CO4	Manifest the working of electronic instruments like voltmeter, multi-meter, frequency meter and CRO.	К3
CO5	Display the knowledge of transducers, their classifications and their applications for the measurement of physical quantities like motion, force, pressure, temperature, flow and liquid level.	K4

	CO-PO Matrix														
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	2	2	2								2			
CO2	2	1	1									2			
CO3	1	1	1									1			
CO4	1	1	2		2	2	2			1	1	2			
CO5	2	2	2	2	2	2	2			2	2	3			
Avg	1.60	1.40	1.60	2.00	2.00	2.00	2.00			1.50	1.50	2.00			

	CO-PSO Matrix										
COs	PSO1	PSO2	PSO3								
CO1	3	1	1								
CO2	3		1								
CO3	1	1	1								
CO4	2	2	2								
CO5	2	2	3								
Avg	2.20	1.50	1.60								

Sub Code	KEE-303
Sub. Name	Basic Signals and Systems

	COURSE OUTCOMES	Bloom's Level
CO1	Represent the various types of signals & systems and can perform mathematical operations on them.	
CO2	Analyze the response of LTI system to Fourier series and Fourier transform and to evaluate their applications to network analysis.	
CO3	Analyze the properties of continuous time signals and system using Laplace transform and determine the response of linear system to known inputs.	
CO4	Implement the concepts of Z transform to solve complex engineering problems using difference equations	
CO5	Develop and analyze the concept of state-space models for SISO & MIMO system.	

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	1	1								1	
CO2	2	2	1	2								3	
CO3	2	2	1	2								3	
CO4	2	2	1	2								3	
CO5	2	3	2	2	1							3	
Avg	2.00	2.00	1.20	1.80	1.00							2.60	

	CO-PSO Matrix												
COs	PSO1	PSO2	PSO3										
CO1	3	1	1										
CO2	3	2	2										
CO3	3	2	2										
CO4	3	2	2										
CO5	3	2	2										
Avg	3.00	1.80	1.80										

Sub Code	KEE-351
Sub. Name	Analog Electronics Lab

	COURSE OUTCOMES	Bloom's Level
CO1	Understand the characteristics and applications of the Semiconductor devices.	K_2, K_3
CO2	Draw the characteristics of BJT, FET and MOSFET.	K_2, K_4
CO3	Understand the parameters of Operational Amplifier and instrumentation. Amplifier with their applications.	K_2, K_4
CO4	Understand the V-I characteristics of Power devices like SCR, TRIAC.	K ₂ , K ₄

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	1	2	1				1		2	
CO2	3	2	3	1	2	1				1		2	
CO3	3	3	3	1	2	1				2		3	
CO4	3	3	2		2	2				2			
Avg	3.00	2.75	2.75	1.00	2.00	1.25				1.50		2.33	

	CO-PSO Matrix											
COs	PSO1	PSO2	PSO3									
CO1	3	2	1									
CO2	3	2	2									
CO3	3	3	1									
CO4	3	2	1									
Avg	3.00	2.25	1.25									

Sub Code	KEE-352
Sub. Name	ELECTRICAL MEASUREMENTS AND INSTRUMENTATION LAB

	COURSE OUTCOMES	Bloom's Knowledge Level
CO1	Understand the importance of calibration of measuring instruments.	K1
CO2	Demonstrate the construction and working of different measuring instruments.	К3
CO3	Demonstrate the construction and working of different AC and DC bridges, along with their applications.	K2
CO4	Ability to measure electrical engineering parameters like voltage, current, power & phase difference in industry as well as in power generation, transmission and distribution sectors.	K2

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	1		2		1		2			2	
CO2	2		2	1	2	2	2		2			2	
CO3	3	1	2	1	2				2	2		2	
CO4	2	2	1	1		2	2		2		2	2	
Avg	2.25	1.33	1.50	1.00	2.00	2.00	1.67		2.00	2.00	2.00	2.00	

	CO-PSO Matrix									
COs	PSO1	PSO2	PSO3							
CO1	2		2							
CO2	2	2	2							
CO3	2		2							
CO4	2	2	2							
Avg	2.00	2.00	2.00							

Sub Code	KEE-353
Sub. Name	Electrical Workshop

	COURSE OUTCOMES	Bloom's Level
CO1	Perform various types of Electrical connections.	K_3
CO2	Develop small circuits on PCB	K ₆
CO3	Differentiate between various electrical wires, cables and accessories.	K ₃
CO4	Demonstrate the layout of electrical substation & various safety measures.	K ₂
CO5		

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2				1	2		
CO2	3	2	3	1	2				1	2		2
CO3	3	3	3	2	2	1	1		1	2		2
CO4	3	3	3	2	2	1	1				1	2
CO5												
Avg	3.00	2.75	3.00	1.75	2.00	1.00	1.00		1.00	2.00	1.00	2.00

	CO-PSO Matrix									
COs	PSO1	PSO2	PSO3							
CO1	3	2	2							
CO2	3	3	2							
CO3	3	3	2							
CO4	3	2	2							
CO5										
Avg	3.00	2.50	2.00							

Sub Code	KNC-301
Sub. Name	Computer System Security

Dub.	. (4111)		прист	- System	- Secur	ıty								
							MOTE	OLUZ	COME	~				
	1				CO	UK	RSE	OUT	COMES	<u> </u>				
CO1		discove s to mit			_	pos	se c	yber se	ecurity t	hreats	and to	explai	n how t	to fix the
CO2		To discover cyber attack scenarios to web browsers and web servers and to explain how to mitigate such threats												
CO3	To discover and explain mobile software bugs posing cyber security threats explain and recreate exploits, and to explain mitigation techniques.													
To articulate the urgent need for cyber security in critical computer systems, networks, and world wide web, and to explain various threat scenarios											etworks,			
CO5		articula lain mi				eybo	er a	ttack i	ncident	s, exp	lain th	e attac	k scena	rios, and
						C	O-P	O Ma	trix					
Course Outcome PO1 PO			PO2	PO3	PO4	P(D 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
СО)1		2		1			3					1	2
CO)2	1	1					3	2	2				
СО	03		1		1			3	2		2		1	
CO)4	1			1				2	2				
СО	05		2						3	3			1	2
Av	g	1	1.20	0	1	()	3	2.2	2.2	2	0	1	2
						C	O-P	SO M	atrix					
	C	Os		P	SO1			PSC)2		PSO3	3		
	C	01			3			2			1			
	C	O2			2			2			1			
	C	O3			2			1			2			
CO4					1			1			1			
	C	O5			1			1			2			
	A	vg			2	_		1.5	5		1.40			

Evaluation Scheme B.Tech 2^{nd} Year (Electrical & Electronics Engineering)

				SEM	ESTE	RIV							
Sl. No.	Subject	Subject	I	Period	s]	Evaluat	ion Scher	ne	End Semes	ter	Total	Credit
	Codes	,	L	T	P	CT	TA	Total	PS	TE	PE		
1	KAS402/ KOE041-48	Maths IV/ Engg. Science Course	3	1	0	30	20	50		100		150	4
^	KVE401/	Universal Human	3	0	0	20				100		150	,
2	KAS401	Values/Technical Communication	2	1	0	30	20	50		100		150 3	3
3	KEE401	Digital Electronics	3	0	0	30	20	50		100		150	3
4	KEE402	Electrical Machines-I	3	1	0	30	20	50		100		150	4
5	KEE403	Networks Analysis & Synthesis	3	1	0	30	20	50		100		150	4
6	KEE451	Circuit Simulation Lab	0	0	2				25		25	50	1
7	KEE452	Electrical Machines-I Lab	0	0	2				25		25	50	1
8	KEE453	Digital Electronics Lab	0	0	2				25		25	50	1
9	KNC402/ KNC401	Python Programming/Computer System Security	2	0	0	15	10	25		50			0
10		MOOCs (Essential for Hons. Degree)											
		Total										900	21

Sub Code	KOE- 048
Sub. Name	Electronics Engineering

	COURSE OUTCOMES	Bloom's Knowledge Level
CO1	Understand the concept of PN junction and special purpose diodes.	K2
CO2	Study the application of conventional diode and semiconductor diode.	K1
CO3	Analyse the I-V characteristics of BJT and FET.	K4
CO4	Analyze the Op-Amp, amplifiers, integrator, and differentiator.	К3
CO5	Understand the concept of digital storage oscilloscope and compare of DSO with analog oscilloscope	К3

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	1				1			2
CO2	3	3	3	2	1		1	1	1		1	3
CO3	3	3	3	2	1		1	1	2	1	1	3
CO4	3	3	3	3	3	1	1	1	2	1	1	3
CO5	3	3	3	3	3	1	1	2	2	2	2	3
Avg	3.00	3.00	2.60	2.20	1.80	1.00	1.00	1.25	1.60	1.33	1.25	2.80

	CO-PSO Matrix										
COs	PSO1	PSO2	PSO3								
CO1	3		1								
CO2	3	1	2								
CO3	3		2								
CO4	3	1	2								
CO5	3	2	3								
Avg	3.00	1.33	2.00								

Sub Code	KVE-401
Sub. Name	Universal Human Values and Professional Ethics

	COURSE OUTCOMES	Bloom's Level
CO1	Understand the significance of value inputs in a classroom, distinguish between values and skills, understand the need, basic guidelines, content and process of value education, explore the meaning of happiness and prosperity and do a correct appraisal of the current scenario in the society.	
CO2	Distinguish between the Self and the Body, understand the meaning of Harmony in the Self the Co-existence of Self and Body.	
CO3	Understand the value of harmonious relationship based on trust, respect and other naturally acceptable feelings in human-human relationships and explore their role in ensuring a harmonious society	
CO4	Understand the harmony in nature and existence, and work out their mutually fulfilling participation in the nature.	
CO5	Distinguish between ethical and unethical practices, and start working out the strategy to actualize a harmonious environment wherever they work.	

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				1	1	2	2	3	2		1	2
CO2			2	1		3	1	2		2		
CO3						2	2	3				1
CO4		2	2			2	1	2	1	1	1	1
CO5			1		1	2		3	2			
Avg		2.00	1.67	1.00	1.00	2.20	1.50	2.60	1.67	1.50	1.00	1.33

CO-PSO Matrix											
COs	PSO1	PSO2	PSO3								
CO1	2										
CO2	1	2									
CO3	1		2								
CO4	2		1								
CO5	1										
Avg	1.40	2.00	1.50								

Sub Code	KEE-401
Sub. Name	Digital Electronics

	COURSE OUTCOMES						
CO1	Students will be able to apply concepts of Digital Binary System and Implementation of Gates.	K3					
CO2	Students will be able to Analyze and Design the Combinational Logic Circuits.	K4					
CO3	Students will be able to Analyze and Design the Sequential Logic Circuits with their applications.	K4					
CO4	Students will be able to Implement the Design procedure of Synchronous & Asynchronous Sequential Circuits.	К3					
CO5	Students will be able to Apply the concept of Digital Logic Families with circuit implementation.	К3					

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	1				1			2
CO2	3	3	3	2	1		1	1	1		1	3
CO3	3	3	3	2	1		1	1	2	1	1	3
CO4	3	3	3	3	3	1	1	1	2	1	1	3
CO5	3	3	3	3	3	1	1	2	2	2	2	3
Avg	3.00	3.00	2.60	2.20	1.80	1.00	1.00	1.25	1.60	1.33	1.25	2.80

CO-PSO Matrix										
COs	PSO1	PSO2	PSO3							
CO1	3		1							
CO2	3	1	2							
CO3	3		2							
CO4	3	1	2							
CO5	3	2	3							
Avg	3.00	1.33	2.00							

Sub Code	KEE- 402
Sub. Name	Electrical Machine - I

	COURSE OUTCOMES						
CO1	Students will be able to analyze the various principles & concepts involved in Electromechanical Energy conversion.	K4					
CO2	Students will be able to Demonstrate the constructional details of DC machines as well as transformers and principle of operation of brushless DC motor, Stepper and DC Servo motors.	K2					
CO3	Students will be able to Evaluate the performance and characteristics of DC Machine as motor and as well as generator.	K4					
CO4	Students will be able to Evaluate the performance of transformers, individually and in parallel operation.	K4					
CO5	Students will be able to Demonstrate and perform various connections of three phase transformers.	К3					

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	1	1	1	1				1	2
CO2	1	2	3	2	2	1						3
CO3	3	2	2	2	2	2	1					3
CO4	3	2	2	3	2	2	1					2
CO5	2	2	3	2	1	1	1					2
CO6												
Average	2.20	2.20	2.40	2.00	1.60	1.40	1.00				1.00	2.40

CO-PSO Matrix										
COs	COs PSO1 PSO2 PSO3									
CO1	3	1	1							
CO2	3	1	3							
CO3	2	2	3							
CO4	2	2	3							
CO5	2	2	2							
CO6										
Average	2.40	1.60	2.40							

Sub Code	KEE-403
Sub. Name	Network Analysis & Synthesis

	COURSE OUTCOMES						
CO1	Apply the knowledge of basic circuital law, nodal and mesh methods of circuit analysis and simplify the network using Graph Theory approach.	K ₃					
CO2	Analyze the AC and DC circuits using Kirchhoff's law and Network simplification theorems.	K_4					
CO3	Analyze steady-state responses and transient response of DC and AC circuits using classical and Laplace transform methods.	K_4					
CO4	Demonstrate the concept of complex frequency and analyze the structure and function of one and two port network. Also evaluate and analysis two-port network parameters.	K ₄					
CO5	Synthesize one port network and analyze different filters.	K_4					

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1								1
CO2	2	2	2	2								2
CO3	2	3	2	2								3
CO4	3	3	3	3								3
CO5	3	3	3	3	1							3
Avg	2.40	2.60	2.20	2.20	1.00							2.40

CO-PSO Matrix										
COs	PSO1	PSO2	PSO3							
CO1	2	1	1							
CO2	2	1	1							
CO3	3	1	2							
CO4	3	1	3							
CO5	3	1	2							
Avg	2.60	1.00	1.80							

Sub Code	KEE-451
Sub. Name	Circuit Simulation Lab

COURSE OUTCOMES						
CO1	Apply the knowledge of basic circuital law, nodal and mesh analysis for given circuit.	K2				
CO2	Analysis of the AC and DC circuits using simulation techniques.	К3				
CO3	Analysis of transient response of AC circuits.	К3				
CO4	Evaluation and analysis of two-port network parameters.	K2				
CO5	Estimation of parameters of different filters.	K2				

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	2				2	1		1
CO2	2	2	1	2	2				2	1		2
CO3	2	2	1	2	2				2	1		3
CO4	3	2	3	2	1				2	1		3
CO5	2	2	2	2	1				2	1		3
Avg	2.20	2.00	1.60	1.80	1.60				2.00	1.00		2.40

CO-PSO Matrix										
COs	PSO1	PSO2	PSO3							
CO1	2	1								
CO2	2	1	1							
CO3	2	2	1							
CO4	2	2								
CO5	2	2	1							
Avg	2.00	1.60	1.00							

Sub Code	KEE-452
Sub. Name	ELECTRICAL MACHINES-I LAB

COURSE OUTCOMES						
CO1	Analyze and conduct basic tests on DC Machines and single-phase Transformer.	K2				
CO2	Obtain the performance indices using standard analytical as well as graphical methods.	К3				
CO3	Determine the magnetization, Load and speed-torque characteristics of DC Machines.	К3				
CO4	Demonstrate procedures and analysis techniques to perform electromagnetic and electromechanical tests on electrical machines.	K2				
CO5						

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2		2	2				2	1	2	2
CO2	2		2	2					2	1		2
CO3	2	2	2		2				2	1		2
CO4	2	2			2				2	1		2
CO5												
Avg	2.00	2.00	2.00	2.00	2.00				2.00	1.00	2.00	2.00

CO-PSO Matrix											
COs	PSO1	PSO2	PSO3								
CO1	2	2	2								
CO2	2										
CO3	2		2								
CO4	2	2									
CO5											
Avg	2.00	2.00	2.00								

Sub Code	KEE-453
Sub. Name	Digital Electronics Lab

	COURSE OUTCOMES						
CO1	Understanding of Digital Binary System and implementation of Gates.						
CO2	Design the Sequential circuits with the help of combinational circuits and feedback element.						
CO3	Design data selector circuits with the help of universal Gates.						
CO4	Design the counters with the help of sequential circuit and basic Gates.						
CO5	Implement the projects using the digital ICs and electronics components.						

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	1				2	1		3
CO2	3	3	3	2	1			1	3	2		3
CO3	3	3	3	2	2	1		1	3	2		3
CO4	3	3	3	3	3			1	3	2		3
CO5	3	3	3	3	3	1	1	2	3	2	2	3
Avg	3.00	3.00	2.60	2.20	2.00	1.00	1.00	1.25	2.80	1.80	2.00	3.00

	CO-PSO Matrix									
COs	PSO1	PSO2	PSO3							
CO1	3		2							
CO2	3	2	3							
CO3	3	2	3							
CO4	3	2	3							
CO5	3	3	3							
Avg	3.00	2.25	2.80							

Sub Code	KNC-402
Sub. Name	PYTHON PROGRAMMING

					CO	URSE	E OUT	COME	S				
CO1	To read and write simple Python programs.												
CO2	To develop Python programs with conditionals and loops.												
CO3 To define Python functions and to use Python data structures — lists, tuples, dictionaries													
CO4	To do input/output with files in Python												
CO5	То	do sear	ching ,s	orting	and me	erging	in Pyth	on					
						CO-l	PO Ma	trix					
Cou		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
СО	1		2		1		3					1	2
СО)2	1	1				3	2	2				
СО	3		1		1		3	2		2		1	
СО)4	1			1			2	2				
СО	5		2					3	3			1	2
Av	g	1	1.20	0	1	0	3	2.2	2.2	2	0	1	2
						CO-l	PSO M	atrix					
	C	Os		P	SO1		PS(PSO3	3		
	C	O1			3		2			1			
	С	O2			2		2			1			
CO3					2		1			2			
CO4					1		1			1			
	C	O5			1		1			2			
	A	vg			2		1.	5		1.40			

EVALUATION SCHEME - B.TECH 3^{rd} YEAR (ELECTRICAL & ELECTRONICS ENGINEERING)

				SEM	ESTI	ER V							
Sl.	Subject Codes	Subject	Periods			Evaluation Scheme				End Semester		Total	Credit
No.	Codes		L	T	P	CT	TA	Total	PS	TE	PE		
1	KEE501	Power System - I	3	1	0	30	20	50		100		150	4
2	KEE502	Control System	3	1	0	30	20	50		100		150	4
3	KEE503	Electrical Machines-II	3	1	0	30	20	50		100		150	4
4	KE*051- KE*054	Departmental Elective-I	3	0	0	30	20	50		100		150	3
5	KEE055- KEE058	Departmental Elective-II	3	0	0	30	20	50		100		150	3
6	KEE551	Power System-I Lab	0	0	2				25		25	50	1
7	KEE552	Control System Lab	0	0	2				25		25	50	1
8	KEE553	Electrical Machines - II Lab	0	0	2				25		25	50	1
9	KEN554	Mini Project or Internship Assessment*	0	0	2				50			50	1
10	KNC501/ KNC502	Constitution of India, Law and Engineering / Indian Tradition, Culture and Society	2	0	0	15	10	25		50			
11		MOOCs (Essential for Hons. Degree)											
		Total	17	3	8							950	22

^{*}The Mini Project or internship (4 weeks) conducted during summer break after IV semester and will be assessed during V semester.

DEPART	MENT ELECTIVE - I	DEPARTMENT ELECTIVE - II					
KEE051	Robotics	KEE055	Optimization Techniques				
KEE052	Sensors and Transducers	KEE056	Neural Networks & Fuzzy System				
KEE053	Industrial Automation and Control	KEE057	Digital Signal Processing				
KEN051	Bio-Medical Instrumentation	KEE058	Analog & Digital Communication				

Sub Co	ode	KEE-501							
Sub. N	Sub. Name Power System-1								
	COURSE OUTCOMES								
CO1	CO1 Describe the working principle and basic components of conventional power plants as well as the other aspects of power generation.								
CO2	Recognize elements of power system and their functions, as well as compare the different types of supply systems. Illustrate different types of conductors, transmission lines and various performance parameters of transmission line for short, medium and long transmission line.								
CO3	Calc lo	culate sag and tension in overhead lines with and without wind and ice ading. Classify different type of insulators, determine potential distribution a string of insulator, string efficiency and its improvement.	K4						
CO4	Compute the inductance and capacitance of single phase, three phase lines with symmetrical and unsymmetrical spacing, Composite conductors-transposition, bundled conductors, and understand the effect of earth on capacitance of transmission lines.								
CO5		Elucidate different types of cables and assess the Resistance and capacitance parameters of cables, grading of cables and compare overhead lines and cables. K4							

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	2	1		1		1		1	
CO2	2	2	2	3	1		1					
CO3	3	3	2	1	1	1						
CO4	2	2	2	2	1		1					
CO5	3		2	2	1		1		1		1	
Avg	2.60	2.33	2.00	2.00	1.00	1.00	1.00		1.00		1.00	

	CO-PSO Matrix									
COs	PSO1	PSO2	PSO3							
CO1	3	2	1							
CO2	2	2	1							
CO3	3	3	2							
CO4	3	2	2							
CO5	3	3	3							
Avg	2.80	2.40	1.80							

Sub Code	KEE-502
Sub. Name	Control System

COURSE OUTCOMES					
CO1	Obtain transfer functions to predict the correct operation of open loop and closed loop control systems and identify the basic elements, structures and the characteristics of feedback control systems.	К3			
CO2	Measure and evaluate the performance of basic control systems in time domain. Design specification for different control action.	K4			
CO3	Analyze the stability of linear time-invariant systems in time domain using Routh Hurwitz criterion and root locus technique.	K4			
CO4	Determine the stability of linear time-invariant systems in frequency domain using Nyquist criterion and Bode plot.	K4			
CO5	Design different type of compensators to achieve the desired performance of control System by root locus and Bode plot method. Develop and analyze the intermediate states of the system using state space analysis.	K5			

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1								1
CO2	3	2	2	1								2
CO3	2	2	3	2								3
CO4	3	2	2	3								3
CO5	3	3	3	3	1							3
Avg	2.60	2.00	2.20	2.00	1.00							2.40

CO-PSO Matrix									
COs	PSO1	PSO2	PSO3						
CO1	1	2	1						
CO2	2	2	2						
CO3	3	2	2						
CO4	3	2	2						
CO5	3	2	2						
Avg	2.40	2.00	1.80						

Sub Code	KEE- 503
Sub. Name	Electrical Machine - II

	COURSE OUTCOMES	Bloom's Knowledge Level
CO1	Students will be able to Demonstrate the constructional details and principle of operation of three phase Induction and Synchronous Machines.	К3
CO2	Students will be able to Analyze the performance of the three phase Induction and Synchronous Machines using the phasor diagrams and equivalent circuits.	K4
CO3	Students will be able to Select appropriate three phase AC machine for any application and appraise its significance.	K4
CO4	Students will be able to Start and observe the various characteristics of three phase Induction & Synchronous Machines	K4
CO5	Students will be able to Explain the principle of operation and performance of Single-Phase Induction Motor & Universal Motor.	К3

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	2	1		1		1		1	
CO2	2	2	2	3	1		1					
CO3	3	3	2	1	1	1						
CO4	2	2	2	2	1		1					
CO5	3		2	2	1		1		1		1	
CO6												
Average	2.60	2.33	2.00	2.00	1.00	1.00	1.00		1.00		1.00	

	CO-PSO Matrix								
COs	PSO1	PSO2	PSO3						
CO1	3	2	1						
CO2	2	2	1						
CO3	3	3	2						
CO4	3	2	2						
CO5	3	3	3						
CO6									
Average	2.80	2.40	1.80						

Sub Code	KEE-052
Sub. Name	Sensors and Transducers

	COURSE OUTCOMES						
CO1	Understand the working of commonly used sensors in industry for measurement of displacement, force and pressure.						
CO2	Recognize the working of commonly used sensors in industry for measurement of temperature, position, accelerometer, vibration sensor, flow and level.						
CO3	Identify the application of machine vision.						
CO4	Conceptualize signal conditioning and data acquisition methods.						
CO5	Comprehend smart sensors and their applications in automation systems.						

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	2	2	2				1	2
CO2	2	1	2	1	2	2	2				1	2
CO3	2	1	2	2	3	2	1			1	1	2
CO4	1	1	1	2	3	1	1					2
CO5	2	2	1	2	3	1				1	1	2
Avg	1.80	1.20	1.60	1.60	2.60	1.60	1.50			1.00	1.00	2.00

	CO-PSO Matrix								
COs	PSO1	PSO2	PSO3						
CO1	2	1	3						
CO2	2	1	3						
CO3	1	1	2						
CO4	2	2	2						
CO5	2	2	3						
Avg	1.80	1.40	2.60						

Sub Code	KEE-058
Sub. Name	Analog & Digital Communication

	COURSE OUTCOMES	Bloom's Knowledge Level
CO1	Understand the Amplitude Modulation in communication system.	K3
CO2	Comprehend the Frequency & Phase modulation.	K2
CO3	Realize the Pulse Modulation Techniques	K2
CO4	Get the Digital Modulation Techniques and their use in communication system.	K2
CO5	Apply the concept of Information Theory in Communication Engineering.	К3

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	1							1
CO2	2	3	2	2	1	1	1		1	1		2
CO3	3	2	3	2	2	1	1	1			1	3
CO4	2	3	2	1	1	2	1		1	1		2
CO5	2	2	1	2	1	2	1	1			1	
Avg	2.25	2.25	2.00	1.50	1.25	1.33	1.00	1.00	1.00	1.00	1.00	2.00

CO-PSO Matrix							
COs	PSO1	PSO2	PSO3				
CO1	3		1				
CO2	3	1	2				
CO3	3		2				
CO4	3	1	2				
CO5	3	2	3				
Avg	3.00	1.33	2.00				

Sub Code	KEE-551
Sub. Name	POWER SYSTEM-I LAB

	COURSE OUTCOMES	Bloom's Level
CO1	Use programming tools /Software: Scilab, MATLAB or any C, C++ - Compiler and formulate a program/simulation model for calculation of various parameters related to transmission line.	K6
CO2	Use programming tools /Software: Scilab, MATLAB or any C, C++ - Compiler and formulate a program/simulation model for calculation of parameters for underground cable.	К6
СОЗ	Use programming tools /Software: Scilab, MATLAB or any C, C++ - Compiler and formulate a program/simulation model for calculation of corona loss.	К6

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	2	1		1		1		1	
CO2	2	2	2	3	1		1					
CO3	3	3	2	1	1	1						
Avg	2.67	2.50	2.00	2.00	1.00	1.00	1.00		1.00		1.00	

CO-PSO Matrix							
COs	PSO1	PSO2	PSO3				
CO1	3	2	1				
CO2	2	2	1				
CO3	3	3	2				
Avg	3.00	1.80	1.80				

Sub Code	KEE-552
Sub. Name	Control System Lab

COURSE OUTCOMES					
CO1	Determine the characteristics of control system components like ac servo motor, synchro, potentiometer, servo voltage stabilizer and use them in error detector mode.	К3			
CO2	Compare the performance of control systems by applying different controllers /compensators.	K4			
CO3	Analyze the behavior of dc motor in open loop and closed loop conditions at various loads & determine the response of 1st& 2nd order systems for various values of constant K.	K4			
CO4	Apply different stability methods of time & frequency domain in control systems using software & examine their stability.	K4			
CO5	Convert the transfer function into state space & vice versa & obtain the time domain response of a second order system for step input and their performance parameters using software.	К5			

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	1				2	1		1
CO2	3	3	2	1	1				2	1		2
CO3	2	2	2	1	2				2	1		3
CO4	3	2	3	1	3				2	1		3
CO5	2	2	2	1	3				2	1		3
Avg	2.40	2.00	2.00	1.00	2.00				2.00	1.00		2.40

CO-PSO Matrix								
COs	PSO1	PSO2	PSO3					
CO1	2	2	1					
CO2	2	2	1					
CO3	2	2	2					
CO4	2	1	2					
CO5	2	1	2					
Avg	2.00	1.60	1.60					

Sub Code	KEE- 553
Sub. Name	Electrical Machine–II Lab

	COURSE OUTCOMES	Bloom's Knowledge Level
CO1	Students will be able to Perform various tests and demonstrate the various characteristics of three phase induction motor.	K4
CO2	Students will be able to Demonstrate the working of three phase synchronous machine under different operating conditions.	K4
CO3	Students will be able to Evaluate the performance of single-phase induction motor under different operating conditions.	K5
CO4	Students will be able to Develop simulation models for Electrical Machines.	K6

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	2	2	1	2						2	
CO2	3	1	2	1	1	1						2	
CO3	2	2	2	2	1	1						2	
CO4	2	3	3	2	3	2						2	
CO5													
CO6													
Average	2.50	1.75	2.25	1.75	1.50	1.50						2.00	

CO-PSO Matrix										
COs	PSO1	PSO2	PSO3							
CO1	2	2	1							
CO2	2	2	1							
CO3	1	2	2							
CO4	2	3	2							
CO5										
CO6										
Average	1.75	2.25	1.50							

Sub Code	KNC 501
Sub. Name	Constitution of India, Law and Engineering

	COURSE OUTCOMES							
CO1	CO1 Students will be able to Identify and explore the basic features and modalities about Indian constitution.							
CO2	Students will be able to Differentiate and relate the functioning of Indian parliamentary system at the center and state level.							
CO3	Students will be able to Differentiate different aspects of Indian Legal System and its related bodies.							
CO4	Students will be able to Discover and apply different laws and regulations related to engineering practices.							
CO5	Students will be able to Correlate role of engineers with different organizations and governance models.							

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										1		2
CO2										1		2
CO3						3				2		3
CO4					2	2		2		2	2	
CO5					2	2		3	1	2		2
CO6												
Average					2.00	2.33		2.50	1.00	1.60	2.00	2.25

CO-PSO Matrix									
COs	PSO1	PSO2	PSO3						
CO1									
CO2									
CO3									
CO4	2	1	1						
CO5									
CO6									
Average	2.00	1.00	1.00						

Evaluation Scheme B.Tech 3rd Year (Electrical & Electronics Engg.)

			,	SEN	IES'	TER	VI						
Sl. No.	Subject	Subject	I	Periods Evaluation Scheme				ne		nd ester	Total	Credit	
No.	Codes		L	T	P	CT	TA	Total	PS	TE	PE		
1	KEE601	Power System-II	3	1	0	30	20	50		100		150	4
2	KEE602	Microprocessor and Microcontroller	3	1	0	30	20	50		100		150	4
3	KEE603	Power Electronics	3	1	0	30	20	50		100		150	4
4	KE*06*	Departmental Elective- III	3	0	0	30	20	50		100		150	3
5	KOE06*	Open Elective-I	3	0	0	30	20	50		100		150	3
6	KEE651	Power System-II Lab	0	0	2				25		25	50	1
7	KEE652	Microprocessor and Microcontroller Lab	0	0	2				25		25	50	1
8	KEE653	Power Electronics Lab	0	0	2				25		25	50	1
10	KNC601/ KNC602	Constitution of India, Law and Engineering / Indian Tradition, Culture and Society	2	0	0	15	10	25		50			
11		MOOCs (Essential for Hons. Degree)											
		Total	17	3	6							900	21

DEPARTMENT ELECTIVE - III

KEE 061 Special Electrical Machines

KEN 061 Linear Integrated Circuits

KEE 063 Digital Control System

KEN 062 Embedded Systems

Sub Code	KEE- 601
Sub. Name	Power System - II

	COURSE OUTCOMES	Bloom's Knowledge Level
CO1	Students will be able to Identify power system components on one line diagram of power system and its representation including the behaviour of the constituent components and subsystems and Analyse a network under both balanced and unbalanced fault conditions and design the rating of circuit breakers.	K4
CO2	Students will be able to Perform load flow analysis of an electrical power network and interpret the results of the analysis.	K4
СОЗ	Students will be able to describe the concept of travelling waves in transmission lines and use the travelling wave theory to determine the over voltage caused by surge propagation in transmission networks.	K4
CO4	Students will be able to assess the steady state and transient stability of the power system under various conditions.	K4
CO5	Students will be able to Describe Operating Principle of a relay and classify them according to applications. Explain working principle of Circuit breaker and phenomenon of arc production and quenching.	К3

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	2	1	1				1	2
CO2	3	3	2	2	2						1	2
CO3	2	1	1	2	1	1						3
CO4	2	2	2	2	1		2				1	2
CO5	3	2	3	1	1	1						2
CO6												
Average	2.40	2.00	2.00	2.00	1.40	1.00	1.50				1.00	2.20

	CO-PSO Matrix											
COs	PSO1	PSO2	PSO3									
CO1	2	2	2									
CO2	3	2	3									
CO3	2	1	2									
CO4	3	2	2									
CO5	2	1	2									
CO6												
Average	2.40	1.60	2.20									

Sub Code	KEE-602
Sub. Name	Microprocessor & Microcontroller

Course	e Outcomes:	Knowledge
		Level, KL
Upon t	he completion of the course, the student will be able to:	
CO 1	Demonstrate the basic architecture of 8085 & 8086 microprocessors	K1
CO2	Illustrate the programming model of microprocessors & write program using 8085 microprocessor	К3
CO3	Interface different external peripheral devices with 8085 microprocessor	К3
CO4	Comprehend the architecture of 8051 microcontroller	K2
CO5	Compare advance level microprocessor & microcontroller for different applications	K4

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	1	1	1				1			2	
CO2	3	2	3	2	1		1	1	1		1	3	
CO3	2	3	3	2	1	1	1	1	2	1	1	1	
CO4	3	2	3	3	3	1	1	1	2	1	1	3	
CO5	2	3	3	3	3	1	1	2	2	2	2	2	
Avg	2.40	2.60	2.60	2.20	1.80	1.00	1.00	1.25	1.60	1.33	1.25	2.10	

	CO-PSO Matrix												
COs	PSO1	PSO2	PSO3										
CO1	3		1										
CO2	3	1	2										
CO3	3		2										
CO4	3	1	2										
CO5	3	2	3										
Avg	3.00	1.33	2.00										

Sub Code	KEE-603
Sub. Name	POWER ELECTRONICS

	COURSE OUTCOMES	Bloom's Level
CO1	Demonstrate the characteristics as well as the operation of BJT, MOSFET, IGBT, SCR, TRIAC and GTO and identify their use in the power switching applications.	K4
CO2	Comprehend the non-isolated DC-DC converters and apply their use in different Power electronics applications.	К3
соз	Analyze the phase controlled rectifiers and evaluate their performance parameters.	K5
CO4	Apprehend the working of single-phase ac voltage controllers, cyclo-converters and their various applications.	К3
CO5	Explain the single-phase and three phase bridge inverters differentiate between CSI and VSI and apply PWM for harmonic reduction.	K4

	CO-PO Matrix													
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	1	1		1						2		
CO2	2	2	2	2	1							2		
CO3	3	3	3	1	2	1						3		
CO4	2	2	2	1	1							2		
CO5	3	2	3	1	2	1	1					2		
Avg	2.40	2.00	2.20	1.20	1.50	1.00	1.00					2.20		

	CO-PSO Matrix										
COs	PSO1	PSO2	PSO3								
CO1	2		1								
CO2	2	1	3								
CO3	3	1	3								
CO4	2	1	2								
CO5	3	1	2								
Avg	2.40	1.00	2.20								

Sub Code	KEE-061
Sub. Name	SPECIAL ELECTRICAL MACHINES

	COURSE OUTCOMES						
CO1	Describe the working principle, Constructional Features of different types of electrical machines including the fractional kilowatt machines.	K2					
CO2	Analyse torque- speed characteristics of different electrical machines and interpret their performance and identify the suitable machine for an operation.	K4					
CO3	Study different types of control techniques for a machine and identify the best control strategy based upon different constraints.	K4					
CO4	Illustrate the use of stepper, BLDCs, SRM, and other special machines in the area of the various industrial and domestic as well as commercial applications of various fractional kilowatt machines.	К3					

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	1	1	1				1		1	2	
CO2	3	2	3	2	1		1	1	1		1	3	
CO3	3	2	3	2	1		1	1	2	1	1	3	
CO4	3	2	3	3	3		1	1	2	1	1	3	
Avg	3.00	2.00	2.50	2.00	1.50	0.00	1.00	1.00	1.50	1.00	1.00	2.75	

	CO-PSO Matrix												
COs	PSO1	PSO2	PSO3										
CO1	3		3										
CO2	3	1	3										
CO3	3		3										
CO4	3	1	3										
Avg	3.00	1.00	3.00										

Sub Code	KOE-069
Sub. Name	Understanding the Human Being Comprehensively – Human Aspirations and its Fulfillment

	COURSE OUTCOMES								
CO1	The methodology of this course is explorational and thus universally adaptable. It involves a systematic and rational study of the human being vis-à-vis the rest of existence.								
CO2	It is free from any dogma or set of do's and don'ts related to values.								
СОЗ	It is a process of self-investigation and self-exploration, and not of giving sermons. Whatever is found as truth or reality is stated as a proposal and the students are facilitated and encouraged to verify it in their own right, based on their Natural Acceptance and subsequent Experiential Validation.								
CO4	This process of self-exploration takes the form of a dialogue between the teacher and the students to begin with, and then to continue within the student leading to continuous self-evolution.								
CO5	This self-exploration also enables them to critically evaluate their pre- conditionings and present beliefs.								

	CO-PO Matrix													
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1					1	2	3	2	2	1		3		
CO2			1		1		2	3	1			2		
CO3		1			2	2	2	3	2	1		2		
CO4	1				2		2	2	2	1	1	1		
CO5			1	2		2	2	2	2	1		2		
Avg	1	1	1	2	1.5	2	2.2	2.4	1.8	1	1	2		

	CO-PSO Matrix												
COs	PSO1	PSO2	PSO3										
CO1	2		1										
CO2	1	1											
CO3	2	1											
CO4	1												
CO5	2	2											
Avg	1.6	1.33	1										

Sub Code	KEE- 651
Sub. Name	Power System–II Lab

	COURSE OUTCOMES	Bloom's Knowledge Level
CO1	Students will be able to Test various relays for different characteristics and compare with the performance characteristics provided by manufacturers.	K4
CO2	Students will be able to Select the power system data for load-flow and fault studies and to develop a program to solve power flow problem using NR and GS methods.	K6
CO3	Students will be able to Analyze various types of short circuit faults	K4
CO4	Students will be able to Demonstrate different numerical integration methods and factors influencing transient stability	К3
CO5	Students will be able to Determine the effect of load in long transmission line	К3

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	1	1						2
CO2	3	2	3	2	2							2
CO3	3	3	2	2	2	1					1	3
CO4	2	2	3	2	1							2
CO5	3	3	2	1	2	1	1				1	2
CO6												
Average	2.60	2.40	2.40	1.80	1.60	1.00	1.00				1.00	2.20

CO-PSO Matrix										
COs	PSO1	PSO2	PSO3							
CO1	2	2	1							
CO2	2	2	3							
CO3	3	2	3							
CO4	2	1	2							
CO5	3	1	2							
CO6										
Average	2.40	1.60	2.20							

Sub Code	KEE-652
Sub. Name	Microprocessor & Microcontroller Lab

	Course Outcomes:	Knowledge Level, KL				
Upon t	he completion of the course, the student will be able to:					
CO 1	Study of microprocessor system	K2				
CO2	Development of flow chart for understanding the data flow	K 3				
CO3	Learning assembly language to program microprocessor based system	K3				
CO4	Interfacing different peripheral devices with the microprocessor	K4				
CO5	Building logic for microprocessor based system	K4				

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	1	1	1				1			2	
CO2	2	1	3	2	1		1	1	1		1	3	
CO3	3	2	3	2	1		2	1	2	1	1	2	
CO4	3	2	3	3	3	1	1	1	2	1	1	3	
CO5	3	3	3	3	3	1	2	2	2	2	2	2	
Avg	2.80	2.40	2.60	2.20	1.80	1.00	1.20	1.25	1.60	1.33	1.25	2.40	

	CO-PSO Matrix											
COs	PSO1	PSO2	PSO3									
CO1	3		1									
CO2	3	2	2									
CO3	2	1	3									
CO4	3	1	1									
CO5	2	2	3									
Avg	2.60	1.20	2.00									

Sub Code	KEE-653
Sub. Name	Power Electronics Lab

	COURSE OUTCOMES	Bloom's Level
CO1	Analyze the characteristics of MOSFET, IGBT, SCR and SCR.	K4
CO2	Design firing circuits for Thyristors	К3
соз	Construct power semiconductor circuits for industrial applications	K5
CO4	Analyze the operation of motors on various power converters.	К3
CO5	Analyze the working of various converters through MATLAB simulation.	K4

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	1	2	2	2						2	
CO2	2	2	3	1	1	1						2	
CO3	3	1	2	2	2	1	2					2	
CO4	3	2	2	1	2	1						1	
CO5	2	2	2	2	1	1						2	
Avg	2.40	1.80	2.00	1.60	1.60	1.20	2.00					1.80	

	CO-PSO Matrix											
COs	PSO1	PSO2	PSO3									
CO1	2	1	1									
CO2	2	2	2									
CO3	1	2	1									
CO4	2	2	2									
CO5	2	2	2									
Avg	1.80	1.80	1.60									

Sub Code	KNC602
Sub. Name	INDIAN TRADITIONS, CULTURAL AND SOCIETY

	COURSE OUTCOMES	Bloom's Knowledge Level
CO1	The course aims at imparting basic principles of thought process, reasoning and inference to identify the roots and details of some of the contemporary issues faced by our nation and try to locate possible solutions to these challenges by digging deep into our past.	K3
CO2	To enable the students to understand the importance of our surroundings and encourage the students to contribute towards sustainable development.	K4
CO3	To sensitize students towards issues related to 'Indian' culture, tradition and its composite character.	K4
CO4	To make students aware of holistic life styles of Yogic-science and wisdom capsules in Sanskrit literature that are important in modern society with rapid technological advancements and societal disruptions.	К3
CO5	To acquaint students with Indian Knowledge System, Indian perspective of modern scientific world-view and basic principles of Yoga and holistic health care system.	К3

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1				3		3		2				2	
CO2						3	3	2					
CO3			2			3	3	1	3				
CO4			2			3	3	2	3			1	
CO5			2			3	3	2	3			2	
Avg			2.00	3.00		3.00	3.00	1.80	3.00			1.67	

	CO-PSO Matrix					
COs	PSO1	PSO2	PSO3			
CO1	1		2			
CO2	1					
CO3		1				
CO4	1		2			
CO5		1	2			
Avg	1.00	1.00	2.00			

Evaluation Scheme B.Tech 4th Year (Electrical & Electronics Engg.)

YEAR 4th / SEMESTER-VII

S.	Subject	Subject Name	Department	L-T-P	Th./Lab Marks	5	Sessional	Total	Credit
No.	Code	,	•		ESE	CT	TA		
1		OPEN ELECTIVE COURSE-1	Other Deptt.	300	70	20	10	100	3
2		DEPTT ELECTIVE COURSE-3	Core Deptt.	300	70	20	10	100	3
3		DEPTT ELECTIVE COURSE-4	Core Deptt.	310	70	20	10	100	4
4	REN701	COMMUNICATION SYSTEMS	Core Deptt.	310	70	20	10	100	4
5	REE702	POWER SYSTEM PROTECTION	Core Deptt.	300	70	20	10	100	3
6	REE751	INDUSTRIAL AUTOMATION & PLC LAB	Core Deptt.	002	50		50	100	1
7	REE752	POWER SYSTEM LAB	Core Deptt.	002	50		50	100	1
8	REN753	INDUSTRIAL TRAINING	Core Deptt.	003			100	100	2
9	REN754	PROJECT-1	Core Deptt.	006			200	200	3
	TOTAL				450	100	450	1000	24

DEPTT. ELECTIVE COURSE-3

1. REE070: Microprocessors and Microcontrollers

2. REE071: Utilization of Electrical Energy & Electric Traction

3. REE072: Introduction to Smart Grid

4. REN070: Introduction to Robotics

DEPTT. ELECTIVE COURSE-4

REE075: Industrial Automation and Control
 REE076: Energy Efficiency & Conservation

3. REE077: Reliability Engineering

4. REN075: Telemetry & Data Transmission

Sub Code	ROE-074
Sub. Name	Understanding the Human Being

	COURSE OUTCOMES	Bloom's Level
CO1	The methodology of this course is explorational and thus universally adaptable. It involves a systematic and rational study of the human being vis-à-vis the rest of existence.	
CO2	It is free from any dogma or set of do's and don'ts related to values.	
CO3	It is a process of self-investigation and self-exploration, and not of giving sermons. Whatever is found as truth or reality is stated as a proposal and the students are facilitated and encouraged to verify it in their own right, based on their Natural Acceptance and subsequent Experiential Validation.	
CO4	This process of self-exploration takes the form of a dialogue between the teacher and the students to begin with, and then to continue within the student leading to continuous self-evolution.	
CO5	This self-exploration also enables them to critically evaluate their pre- conditionings and present beliefs.	

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					1	2	3	2	2	1		3
CO2			1		1		2	3	1			2
CO3		1			2	2	2	3	2	1		2
CO4	1				2		2	2	2	1	1	1
CO5			1	2		2	2	2	2	1		2
Avg	1.00	1.00	1.00	2.00	1.50	2.00	2.20	2.40	1.80	1.00	1.00	2.00

	CO-PSO Matrix					
COs	PSO1	PSO2	PSO3			
CO1	2		1			
CO2	1	1				
CO3	2	1				
CO4	1					
CO5	2	2				
Avg	1.60	1.33	1.00			

Sub Code	REE071
Sub. Name	Utilization of Electrical Energy and Traction

	COURSE OUTCOMES					
CO1	To understand the operating principles and characteristics of traction motors with respect to speed, temperature, loading condition	K3				
CO2	To acquaint with the different types of heating and welding techniques	K4				
CO3	To study the basic principles of illumination and its measurement	K4				
CO4	To understand the basic principle of electric traction including speed– time curves of different traction services	К3				
CO5	To understand the method of calculation of various traction system for braking, acceleration and other related parameters, including demand side management.	К3				

				(CO-PO	Matrix						
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			1	1		1						
CO2	2	1	1	1		1						
CO3	2	1	2	1		1						
CO4	2	2	1	1	1	1						
CO5	3	2	2	2	2	2						
Avg	2.25	1.50	1.40	1.20	1.50	1.20						

	CO-PSO Matrix					
COs	PSO1	PSO2	PSO3			
CO1	2	1	1			
CO2	2	2	1			
CO3	1	2	1			
CO4	1	2	1			
CO5	1	2	1			
Avg	1.40	1.80	1.00			

Sub Code	REN-075
Sub. Name	Telemetry & Data Transmission

	COURSE OUTCOMES					
CO1	Students will be able to Recognize the various Telemetry systems, coding, and Time Division Multiplexing and Frequency Division Multiplexing techniques.					
CO2	Students will be able to Identify and explain the types of errors occurring in measurement systems.					
CO3	Students will be able to Apply various digital techniques to measure voltage, frequency and speed.					
CO4	Students will be able to understand basic principles of telemetry systems and systems for data communication.					
CO5	Students will be able to understand the purpose of different Telemetry & Remote-control systems in Instrumentation field.					

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1			1			2
CO2	2	2	2	2	1	1						2
CO3	2	1	2	1	1	1						2
CO4	3	2	2	1	2	2			1			2
CO5	2	2	2	1	2	1						2
CO6												
Average	2.20	1.60	2.00	1.20	1.40	1.20			1.00			2.00

	CO-PSO Matrix								
COs	PSO1	PSO2	PSO3						
CO1	2	1	2						
CO2	2	2	2						
CO3	2	1	2						
CO4	2	1	2						
CO5	2	1	1						
CO6									
Average	2.00	1.20	1.80						

Sub Code	REN-701
Sub. Name	Communication System

	COURSE OUTCOMES	Bloom's Knowledge Level
CO1	Students will be able to apply the basic fundamental of signals analysis used in various field of Engineering.	K3
CO2	Students will be able to explain how signals are transmitted and its reception take place in communication engineering with good quality.	K4
соз	Students will be able to Sketch the spectrum of different signals used in multidisciplinary field of engineering.	K1
CO4	Understand the various techniques for better communication in multidiscipline field of engineering and it will motivate to work with multidiscipline team member.	К2
CO5	Understand the need of communication engineering in the field of research, and higher-level engineering solutions in global and economical context.	К3

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	1							1
CO2	2	3	2	2	1	1	1		1	1		2
CO3	3	2	3	2	2	1	1	1			1	3
CO4	2	3	2	1	1	2	1		1	1		2
	2	1	2	1		1	1	1	1	1	1	2
Avg	2.25	2.25	2.00	1.50	1.25	1.33	1.00	1.00	1.00	1.00	1.00	2.00

CO-PSO Matrix							
COs	PSO1	PSO2	PSO3				
CO1	3		1				
CO2	3	1	2				
CO3	3		2				
CO4	3	1	2				
CO5	3	2	3				
Avg	3.00	1.33	2.00				

Sub Code	REE-702
Sub. Name	Power System Protection

	COURSE OUTCOMES						
CO1	Student will be able to know about different protective schemes used in Power Systems.						
CO2	Students will be able to Know about various protective systems, how it works and where it is used?						
CO3	Student will be able to know the different types, working and applications of relays and grounding in Power Systems.						
CO4	Student will be able to know about the protection of Transmission lines and generators.						
CO5	Student will be able to know the working and applications of Circuit Breakers in Power Systems.						

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	1							1
CO2	3	3	3	3	2	2	2					3
CO3	3	3	3	3	2	2	2					3
CO4	2	3	3	3	2	2	2					3
CO5	3	3	2	3	2	2	2					3
Avg	2.80	3.00	2.40	2.60	1.80	2.00	2.00					2.60

CO-PSO Matrix								
COs	PSO1	PSO2	PSO3					
CO1	2	1	1					
CO2	2	1	1					
CO3	2	1	2					
CO4	2	1	1					
CO5	2	1	2					
Avg	2.00	1.00	1.40					

Sub Code	REE-751
Sub. Name	Industrial Automation & PLC Lab

	COURSE OUTCOMES	Bloom's Knowledge Level
CO1	Student will be able to understand the hardware & software used in PLC and implementation of logic gates.	К3
CO2	Student will be able to understand & develop the ladder program for DOL starter and its application as a timer.	K4
СОЗ	Student will be able to understand the hardware & software used in PLC and implementation of logic gates.	K1
CO4	Student will be able to understand the Performance of Timers & Counters.	К3

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	1							1
CO2	2	3	2	2	1	1	1		1	1		2
CO3	3	2	3	2	2	1	1					3
CO4	2	3	2	1	1	2	1		1	1		2
Avg	2.25	2.25	2.00	1.50	1.25	1.33	1.00	#DIV/0!	1.00	1.00	#DIV/0!	2.00

	C	O-PSO Matrix		
COs	PSO1	PSO2	PSO3	
CO1	3		1	
CO2	3	1	2	
CO3	3		2	
CO4	3	1	2	
Avg	3.00	1.00	2.00	

Sub Code	REE752
Sub. Name	Power System Lab

	COURSE OUTCOMES					
CO1	Analyze the performance of transmission lines and relays	K3				
CO2	Calculate the steady-state power flow in a power system.	K2				
CO3	nalyze different types of short-circuit faults which occur in power systems	K4				
CO4	To perform testing of transformer oil.	К3				
CO5	To evaluate sequence components of alternator.	K2				

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	2	2	2						
CO2	2	1	2	1	1	1						
CO3	2	2	2	2	2	1						
CO4	2	2	2	1	2	1						
CO5	1		2	2		1						
Avg	1.80	1.75	1.80	1.60	1.75	1.20						

	CO-PSO Matrix								
COs	PSO1	PSO2	PSO3						
CO1	2	1	1						
CO2	2	2	1						
CO3	1	2	1						
CO4	1	2	1						
CO5	1	2	1						
Avg	1.40	1.80	1.00						

Evaluation Scheme B.Tech 4th Year (Electrical & Electronics Engg.)

YEAR 4th / SEMESTER-VIII

S. No.	Subject Code	Subject Name	Department	Department L-T-P		S	Sessional	Total	Credit
110.	Couc				ESE	CT	TA		
1		OPEN ELECTIVE COURSE-2	Other Deptt.	300	70	20	10	100	3
2		DEPTT ELECTIVE COURSE-5	Core Deptt.	310	70	20	10	100	4
3		DEPTT ELECTIVE COURSE-6	Core Deptt.	300	70	20	10	100	3
4	REN851	GD & SEMINAR	Core Deptt.	003			100	100	2
5	REN852	PROJECT-2	Core Deptt.	0012	350		250	600	12
	TOTAL				560	60	380	1000	24

DEPTT. ELECTIVE COURSE-5

1. REE080: Advanced Control System

2. REE081: Introduction to Power Quality & FACTS

3. REE082: Power System Dynamics, Control and Monitoring (NPTEL)

4. REN080: Optical Fiber Communication

DEPTT. ELECTIVE COURSE-6

1. REE085: EHVAC &DC Transmission

2. REE086: Power Theft & Energy Management

3. REE087: Digital Image Processing

4. REE088: Antennas (NPTEL)

Sub Code	ROE- 082
Sub. Name	Entrepreneurship Development

	COURSE OUTCOMES								
CO1	Students will be able to Develop idea generation, creative and innovative skills.								
CO2	Students will be able to Aware of different opportunities and successful growth stories.								
CO3	Students will be able to Learn how to start an enterprise and design business plans those are suitable for funding by considering all dimensions of business.								
CO4	Students will be able to Understand entrepreneurial process by way of studying different case studies and find exceptions to the process model of entrepreneurship.								
CO5	Students will be able to Run a small enterprise with small capital for a short period and experience the science and art of doing business.								

					CO-	-PO Matr	ix					
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	2	2	1	2	2	1	1	2	2
CO2		1			1	1	2	2	2	2	3	2
CO3		1	2	1	2	2	2	1	3	2	3	3
CO4	1	2		2		1	2		2	1	2	1
CO5	1	2	2	1	1	1	2	3	3	2	2	2
CO6												
Average	1.00	1.40	1.67	1.50	1.50	1.20	2.00	2.00	2.20	1.60	2.40	2.00

	CO-PSO) Matrix	
COs	PSO1	PSO2	PSO3
CO1	1	2	2
CO2		1	1
CO3	2	1	2
CO4	1	1	2
CO5	3	2	2
CO6			
Average	1.75	1.40	1.80

Sub Code	REE-081
Sub. Name	Introduction to Power Quality & FACTS

	COURSE OUTCOMES					
CO1	Students will be able to understand the terms and definitions of different power quality problems and standards.	K4				
CO2	Students will be able to understand the various causes of voltage sag, how to estimate it and fundamental principle of protection with various mitigation techniques.	K4				
CO3	Students will be able to understand the various causes of electrical transients with its various mitigation techniques.	К3				
CO4	Students will be able to understand the terms and definitions of various FACTS controllers with their applications.	K4				
CO5	Students will be able to understand the terms and definition of harmonics, how to measure it, various causes and effects of harmonics on various electrical equipment with its mitigation techniques.	К3				

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2			2				2
CO2	3	3	3	3	2	2	2	1				3
CO3	3	3	3	2	2	2	2					3
CO4	3	3	3	2	3	2	2					3
CO5	3	3	3	3	3	2	2					3
Avg	3.00	3.00	2.80	2.60	2.40	2.00	2.00	1.50				2.83

CO-PSO Matrix											
COs	COs PSO1 PSO2 PSO3										
CO1	2	1	1								
CO2	2	1	1								
CO3	2	1	2								
CO4	2	1	1								
CO5	2	1	2								
Avg	2.00	1.00	1.40								

Sub Code	REE-085
Sub. Name	EHV AC & DC Transmission

	COURSE OUTCOMES					
CO1	To understand the basic concepts of EHV AC and HVDC transmission.	K4				
CO2	To identify the electrical requirements for HVDC lines.	K4				
CO3	To identify the components used in AC to DC conversion.	К3				
CO4	To understand the operation of HVDC conversion technology.	K4				
CO5	To understand the fundamental requirements of HVDC transmission line design.	К3				

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	2	2			2				2
CO2	3	3	3	3	2	2	2	1				3
CO3	2	3	3	2	2	2	2					2
CO4	3	1	3	2	3	2	2	1				1
CO5	2	2	3	3	3	2	2	1				3
Avg	2.40	2.00	2.80	2.60	2.40	2.00	2.00	1.50				2.20

CO-PSO Matrix										
COs	PSO1	PSO2	PSO3							
CO1	3	1	1							
CO2	2	1	1							
CO3	3	1	2							
CO4	2	1	1							
CO5	3	1	2							
Avg	2.60	1.00	1.40							