

Department of Information Technology

2020-21

Course Outcomes (CO) mapping with Programme Outcomes (PO) and

Programme Specific Outcomes (PSO)

Institute Vision and Mission

Vision

Our vision is to impart Vibrant, Innovative and Global Education to make IMS the world leader in terms of Excellence of Education, Research and to serve the nation in the 21st century.

Mission

- To develop IMSEC as a Centre of Excellence in Technical and Management Education.
- To inculcate in its students the qualities of Leadership, Professionalism, Executive Competence and Corporate understanding.
- To imbibe and enhance Human Values, Ethics and Morals in our students.
- To transform students into Globally Competitive Professionals

Department Vision and Mission

Vision :

To impart futuristic technical education and establish a department of excellence by preparing students to apply their knowledge and varied skills as a competent technocrat to contribute towards solving complex societal problems and thus building a peaceful and prosperous nation.

Mission:

- To impart quality engineering education so that they become perfect IT professional by getting high quality of technical education, research, training, professionalism with strong ethical values.
- To educate students in such a way that they shape up their minds to ensure their productive careers in industry and academia.
- To help students to excel in research and innovation that discovers new knowledge which enables new technologies and systems.
- To prepare students to become an industry ready IT professional by inculcating creativity, team spirit, leadership and ethical competency through industry academia collaboration, continuous curricular, co-curricular and extra-curricular activities.

Program Outcomes

Engineering Graduates will be able to:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Educational Objectives

- **PEO 1:** Graduates of the program will be able to apply fundamental principles of engineering in problem solving and understanding the role of computing in multiple disciplines.
- **PEO 2:** Graduates will learn to apply the various computational techniques and tools for developing solutions & projects in the real world.
- **PEO 3:** Graduates will be employed as Information Technology professional beyond entry level positions or be making satisfactory progress in graduate program.
- **PEO 4:** Graduates will be able to demonstrate that they can function, communicate, collaborate and continue to learn effectively, and ethically as a socially responsible information technology professional. They will contribute to the society by their professional capabilities through lifelong learning.

Program Specific Outcomes (PSO)

- **PSO1:** Foundation of computer system: Ability to understand the principles and working of computer systems.
- **PSO2:** Foundations of software development: possess professional skills and knowledge of software design process. Familiarity and practical competence with a broad range of programming language and open source platforms.
- **PSO3: Foundation of mathematical concepts**: Ability to apply mathematical methodologies to solve computation task, model real world problem, using appropriate data structure and suitable algorithm.
- **PSO4:** Applications of computing and research ability: Ability to use knowledge in various domains to identify research gaps and hence to provide solution to new ideas and innovations.

SEMESTER-III

Sl. No.	Subject Codes	Subject	Р	eriod	ls	Ev	aluatio	onSchem	ie	EndSe mester		Total	Credit
			L	Т	Р	СТ	TA	Total	PS	TE	PE		
1	KOE031- 38/KAS 302	Engineering Science Course/Maths-IV		1	0	30	20	50		100		150	4
	KAS301/	TechnicalCommunication/Uni		1	0								
2	KVE301	versalHuman Values	3	0	0	30	20	50		100		150	3
3	KCS301	DataStructure	3	1	0	30	20	50		100		150	4
4	KCS302	Computer Organization and Architecture	3	1	0	30	20	50		100		150	4
5	KCS303	Discrete Structures & Theory of Logic		0	0	30	20	50		100		150	3
6	KCS351	Data Structures Using CLab	0	0	2				25		25	50	1
7	KCS352	Computer OrganizationLab	0	0	2				25		25	50	1
8	KCS353	Discrete Structure &Logic Lab	0	0	2				25		25	50	1
9	KCS354	Mini Project orInternship Assessment*	0	0	2			50				50	1
10	KNC301/ KNC302	Computer System Security/PythonProgramming	2	0	0	15	10	25		50			0

SEMESTER-IV

Sl. No.	Subject Codes	Subject	Periods			E	valuat	ionSchei	ne	EndSe mester		Total	Credit
			L	T	P	СТ	TA	Total	PS	TE	PE		
1	KAS402/ KOE041- 48	Maths IV/Engg. Science Course		1	0	30	20	50		100		150	4
	KNE 401 /	UniversalHuman		0	0								
2	2 KAS401 Values/TechnicalCommuni cation		2	1	0	30	20	50		100		150	3
3	KCS401	OperatingSystems	3	0	0	30	20	50		100		150	3
4	KCS402	Theory of Automata and Formal Languages		1	0	30	20	50		100		150	4
5	KIT401	WebDesigning	3	1	0	30	20	50		100		150	4
6	KCS451	Operating SystemsLab	0	0	2				25		25	50	1
7	KIT451	Web DesigningLab	0	0	2				25		25	50	1
8	KCS453	Python Language ProgrammingLab		0	2				25		25	50	1
9	KNC402/ KNC401	Python Programming/ Computer SystemSecurity	2	0	0	15	10	25		50			0

Sub Code	KOE-034	
Sub. Name	Sensor & Instrumentation	

	COURSE OUTCOMES	Bloom's Level
CO1	Student will be able to apply the use of sensors for measurement of displacement, force and pressure.	K3
CO2	Student will be able to employ commonly used sensors in industry for measurement of temperature, position, accelerometer, vibration sensor, flow and level.	K2
CO3	Student will be able to demonstrate the use of virtual instrumentation in automation industries.	K3
CO4	Student will be able to identify and use data acquisition methods.	K1
CO5	Student will be able to comprehend intelligent instrumentation in industrial automation.	K2

	CO-PO Matrix													
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	1	1		2	2						2		
CO2	1	2	1	1	2	2					1	2		
CO3	2	2	2	2	3	1				1	1	2		
CO4	1	1	1	2	3	1	1					2		
CO5	2	2	1	2	3	1				1	1	2		
Avg	1.60	1.60	1.20	1.75	2.60	1.40	1.00			1.00	1.00	2.00		
					CO-PS	O Mat	rix							
CO)s		PSC	01		PSO2		PSO3 PSO4						
CC	01								3		2			
CC	02								2		3			
CC)3		1			1			2		1			
CC	04		2			2			2		3			
CC		2			2			1		3				
Av	g		1.6	57		1.67			2.00		2.40)		

Sub Code	KAS 301
Sub. Name	Technical Communication

	COURSE OUTCOMES	Bloom's Level
CO1	Students will be enabled to understand the nature and objective of Technical Communication relevant for the work place as engineers.	K2
CO2	Students will utilize the technical writing for the purposes of Technical Communication and its exposure in various dimensions.	K2
CO3	Students would imbibe inputs by presentation skills to enhance confidence in face diverse audience.	K2
CO4	Technical communication skills will create a vast know-how of the application of the learning to promote their technical competence.	K6
CO5	It would enable them to evaluate their efficiency as fluent & efficient communicators by learning the voice-dynamics.	K5

	CO-PO Matrix													
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	2		1	2	1	1	3	3	2	1		
CO2	1	2	3		3	2				3	2	3		
CO3	1	2	3		3	2	1	2	3	3	2	3		
CO4	2	2	3	1	3	3		1	3	3	3	3		
CO5	1	1	3	1	1		3	3	3	3	1	3		
Avg	1.20	1.60	2.80	1.00	2.20	2.25	1.67	1.75	3.00	3.00	2.00	2.60		

CO-PSO Matrix												
COs	PSO1	PSO2	PSO3	PSO4								
CO1												
CO2												
CO3												
CO4												
CO5												
CO6												
Avg												

Sub Code	Data Structures
Sub. Name	KCS-301

	COURSE OUTCOMES	Bloom's Level
CO1	Analyze performance of algorithms and estimate their worst-case and average-case behaviour using asymptotic notations.	K4
CO2	Describe how arrays, linked lists, stacks, queues, trees, and graphs are represented in memory, used by the algorithms and their common applications.	K1
CO3	Discuss the computational efficiency of the sorting and searching algorithms.	K2
CO4	Implementation of Trees and Graphs and perform various operations on these data structure.	К3
CO5	Understanding the concept of recursion, application of recursion and its implementation and removal of recursion.	K2
CO6	Identify the alternative implementations of data structures with respect to its performance to solve a real-world problem.	K1

	CO-PO Matrix													
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	2									1		
CO2	2	2	3	2	1	1						3		
CO3	2	2	3	2	1	1						3		
CO4	2	2	3	2	1	1					1	3		
CO5	2	2	3	2	1	1					1	3		
CO6	2	2	3	2	1	1					1	2		
Avg	1.83	1.83	2.83	2.0	1.00	1.00					1.00	2.5		

CO-PSO Matrix											
COs	PSO1	PSO2	PSO3	PSO4							
CO1	3	3	2	1							
CO2	3	3	2	1							
CO3	3	3	2	1							
CO4	3	3	2	1							
CO5	3	3	2	1							
CO6	3	3	2	1							
Avg	3.0	3.0	2.0	1.0							

CONTRACTOR OF THE STREET

IMS Engineering College, Ghaziabad

Sub Code	KCS-302
Sub. Name	Computer Organization

	COURSE OUTCOMES	Bloom's Level
CO1	Student will be able to study of the basic structure and operation of a digital computer system.	K2
CO2	Student will be able to analysis of the design of arithmetic & logic unit and understanding of the fixed point and floating point arithmetic operations.	K4
CO3	Student will be able to implement control unit techniques and the concept of Pipelining	К3
CO4	Student will be able to understand the hierarchical memory system, cache memories and virtual memory	K2
CO5	Student will be able to understand the different ways of communicating with I/O devices and standard I/O interfaces	K2

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1								1
CO2	3	3	3	2	2		1					3
CO3	3	3	3	3	2	1	1					3
CO4	3	3	3	3	2	1	1					3
CO5	3	3	3	3	2	1	1					3
Avg	2.80	2.80	2.60	2.40	2.00	1.00	1.00					2.60

CO-PSO Matrix											
COs	PSO1	PSO2	PSO3	PSO4							
CO1	2		3	1							
CO2	2	1	3	2							
CO3	2		3	2							
CO4	3	1	3	3							
CO5	3		2	2							
Avg	2.40	1.00	2.80	2.00							

Sub Code	KCS303
Sub. Name	Discrete Structures and Theory of Logic

	COURSE OUTCOMES	Bloom's Level
CO1	Student would be able to Understand the concepts of Set Theory, Relations, Functions, Natural Numbers.	K2
CO2	Student would be able to Understand the concept of Groups, Abelian Groups, Rings and Fields.	K2
CO3	Student would be able to Understand the concept of POSET, Lattices and Boolean Logic.	K2
CO4	Student would be able to Understand the concepts of Propositional Logic, Predicate Calculus and Quantifiers.	K2
CO5	Student would be able to Understand the concepts of Graphs, Trees, Recurrence Relation and method to solve the Recurrence Relation using Generating Function and combinatorics.	K2

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	3	3							2
CO2	2	3	3	3	2							2
CO3	2	3	3	3	2							2
CO4	2	3	3	3	2							2
CO5	3	2	3	3	2							2
Avg	2.20	2.60	3.00	3.00	2.20							2.00

CO-PSO Matrix											
COs	PSO1	PSO2	PSO3	PSO4							
CO1	2	3	2	1							
CO2	2	3	2	1							
CO3	2	3	2	1							
CO4	2	3	2	1							
CO5	2	2	3	1							
Avg	2.00	2.80	2.20	1.00							

Sub Code	KCS351
Sub. Name	Data Structures Using C Lab

	COURSE OUTCOMES	Bloom's Level
CO1	Interpret and compute asymptotic notations of an algorithm to analyze the consumption of resources (time/space).	K2, K5
CO2	Exemplify and implement stack, queue and list ADT, tree and graph to manage the memory using static and dynamic allocations.	K3
CO3	Implement binary search tree to design applications like expression trees.	K5
CO4	Identify, model, solve and develop code for real life problems like shortest path and MST using graph theory.	K1
CO5	Develop and compare the comparison-based search algorithms and sorting Algorithms.	K6
CO6	Identify appropriate data structure and algorithm for a given contextual problem and develop in C.	K1

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2	1	1					1	3
CO2	2	3	3	2	1	1					1	3
CO3	3	2	3	2	1	1					1	2
CO4	3	2	3	2	1	1					1	3
CO5	2	3	3	2	1	1					1	2
CO6	2	3	3	2	1	1					1	2
Avg	2.3333	2.67	3	2	1	1					1	2.5

CO-PSO Matrix									
COs	PSO1	PSO2	PSO3	PSO4					
CO1	3	3	1	2					
CO2	3	3	1	2					
CO3	3	3	1	2					
CO4	3	3	3	2					
CO5	3	3	1	2					
CO6	3	3	1	2					
Avg	3	3	1.33	2					

16/ रत्ते मा फर	
Sub Code	KCS-352
Sub. Name	Computer Organization Lab

COURSE OUTCOMES						
CO1	Define, Apply and Design basic digital circuits	K1, K3, K6				
CO2	Discuss, Design and Calculate 8 bits I/O, ALU and RTL	K2, K3, K6				
CO3	Explain, apply and design the concept of control unit and memory unit	K2, K3, K6				
CO4	Define and design algorithm using simulators	K1, K6				

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2										1
CO2	1	2	1									1
CO3	1	2	1									1
CO4	1	2	1	1								1
Avg	1.00	2.00	1.00	1.00								1.00

CO-PSO Matrix										
COs	PSO1	PSO2	PSO3	PSO4						
CO1	1	1		1						
CO2	1	1		1						
CO3	1	1		1						
CO4	1	1	1	1						
Avg	1.00	1.00	1.00	1.00						

 Sub Code
 KCS353

 Sub. Name
 Discrete Structures and Logic Lab

COURSE OUTCOMES						
CO1	Students would be having understanding of working with a mathematical tool Maple	K2				
CO2	Students would be able to perform programs of recursion, combinatorics and counting	K3				
CO3	Students would be able to perform programs of set theroy, set operations and probability	K3				
CO4	Student would be able to implement classical mathematical problme like Birthday paradox based on pigeonhole principle.	K3				

	CO-PO Matrix													
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	3	1						1		2		
CO2	3	2	3	2	2					2		3		
CO3	3	2	2	2	1	1					2	2		
CO4	3	2	2	2	1	1						3		
Avg	3.00	2.00	2.50	1.75	1.33	1.00				1.50	2.00	2.50		

CO-PSO Matrix										
COs	PSO1	PSO2	PSO3	PSO4						
CO1	3	1	1	2						
CO2	3	2	2	2						
CO3	3	2	2	2						
CO4	2	3	2	2						
Avg	2.75	2.00	1.75	2.00						

 Sub Code
 KCS354

 Sub. Name
 Mini Project or Internship Assessment

COURSE OUTCOMES							
CO1	Students will be able to identify and present the objective and the work done during training	K1					
CO2	Students will be able to apply the learned concept through design, analysis and development of mini project	K3					
CO3	Students will be able to design and implementation of mini project during their training.	K3, K6					
CO4	Students will be able to discuss the result/output and prepare a mini project report	K2					

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1		1	1		1	1
CO2	2	2	1	1	1	1		1	1	1	1	1
CO3	2	3	3	2	2	1		1	2	2	3	2
CO4	1	2	1	2	1			1	2	1	1	1
Avg	1.50	2.00	1.50	1.50	1.25	1.00		1.00	1.50	1.33	1.50	1.25

CO-PSO Matrix									
COs	PSO1	PSO2	PSO3	PSO4					
CO1	1	2	1						
CO2	1	2	1	1					
CO3	1	1	1	1					
CO4	1	1		1					
Avg	1.00	1.50	1.00	1.00					

 Sub Code
 KNC301

 Sub. Name
 Computer System Security

COURSE OUTCOMES						
CO1	To discover software bugs that pose cyber security threats and to explain how to fix the bugs to mitigate such threats.	K3				
CO2	To discover cyber-attack scenarios to web browsers and web servers and to explain how to mitigate such threats.	K3				
CO3	To discover and explain mobile software bugs posing cyber security threats, explain and recreate exploits, and to explain mitigation techniques.	K2, K3				
CO4	To articulate the urgent need for cyber security in critical computer systems, networks, and world wide web, and to explain various threat scenarios.	K2				
CO5	To articulate the well-knowncyber-attack incidents, explain the attack scenarios, and explain mitigation techniques.	K2, K3				

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	1	1								2	
CO2	2	2	3	1	1				1			2	
CO3	2	2	2	2	1						1	2	
CO4	2	2	2	2	1						1	2	
CO5	2	2	2	2	1						1	2	
Avg	2.00	2.00	2.00	1.60	1.00				1.00		1.00	2.00	

CO-PSO Matrix											
COs	PSO1	PSO2	PSO3	PSO4							
CO1	3	3	1	2							
CO2	2	2	1	1							
CO3	2	2	1	1							
CO4	2	2	1	1							
CO5	2	2	1	1							
Avg	2.20	2.20	1.00	1.20							

EVEN Sem

Sub Code	KCS401
Sub. Name	Operating Systems

COURSE OUTCOMES							
CO1	Students will be able to learn functions, structures, classification and history of operating systems.	K2					
CO2	Students will be able to study and apply concepts relating to operating systems, such as concurrency, Process, Threads and deadlocks.	K1, K3					
CO3	Students will be able to demonstrate and evaluate various CPU scheduling Algorithms.	K3					
CO4	Students will be able to acquire knowledge of I/O management techniques and file system organization used in Operating Systems.	K3					
CO5	Students will be able to examine and evaluate Page Replacement, disk scheduling Algorithm	K4, K5					

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1											1	
CO2	2	1	1									2	
CO3	2	2	2	1								2	
CO4	2	1	1									1	
CO5	2	2	2	1								2	
Avg	1.80	1.50	1.50	1.00								1.60	

	CO-PSO Matrix									
COs	PSO1	PSO2	PSO3	PSO4						
CO1	1			1						
CO2	1	1		1						
CO3	2	2		1						
CO4	1	1		1						
CO5	1			1						
Avg	1.20	1.33		1.00						

 Sub Code
 KCS-402

 Sub. Name
 Theory of Automata And Formal Languages

COURSE OUTCOMES							
CO1	Students will be able to Analyse and design finite automata, pushdown automata, Turing machines, formal languages, and grammars	K4, K6					
CO2	Students should be able to Analyse and design, Turing machines, formal languages, and grammars	K4, K6					
CO3	Students should be able to Demonstrate the understanding of key notions, such as algorithm, computability, decidability, and complexity through problem solving.	K2, K3					
CO4	Students should be able to Prove the basic results of the Theory of Computation.	K5					
CO5	Graduate will be able to State and explain the relevance of the Church-Turing thesis.	K2					

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1			1							1	
CO2	1	2	2									1	
CO3	1		1	2	1							1	
CO4	1	2	1	1	1							1	
CO5	1	1	2	2	2							1	
Avg.	1	1.5	1.5	1.66667	1.25							1	

CO-PSO Matrix											
COs	PSO1	PSO2	PSO3	PSO4							
CO1	2	2		1							
CO2	1	2		1							
CO3	1	2		1							
CO4	1	2		1							
CO5	1	2	2	1							
Avg.	1.2	2	2	1							

CHAZIABAD OHAZIABAD

रबारस्त मा कर	
Sub Code	KAS402
Sub. Name	Maths IV

COURSE OUTCOMES							
CO1	Students will be able to understand how complex analysis is used in the study of air foil for wing design theory and could be able to use analytic functions in finding integration	K2, K4					
CO2	Students will be able to understand the application of integral transform in solving the problems of mechanical vibrations and fluid mechanics.	K2					
CO3	Students will be able to understand how statistical techniques are beneficial in assuring the minimum quality standards through minimum efforts in mammoth productions.	K2					
CO4	Students will be able to understand to solve transcendental equations and solve system of equations numerically	K2					
CO5	Students will be able to understand the application of numerical techniques in solving first order differential equations and find integrations using numerical techniques	K2					

	CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	2	2				2			2	
CO2	2	2	2	2	2				2			2	
CO3	2	2	2	2	3				2			2	
CO4	2	2	2	2	3				2			2	
CO5	2	2	2	2	3				2			2	
Average	2.00	2.00	2.00	2.00	2.60				2.00			2.00	

CO-PSO Matrix											
COs	PSO1	PSO2	PSO3	PSO4							
CO1	1	2	1	2							
CO2	1	2	2	2							
CO3	3	2	3	3							
CO4	3	2	3	3							
CO5	3	2	3	3							
Average	2.2	2	2.4	2.6							

CHAZIABAD CHAZIABAD CHAZIABAD

IMS Engineering College, Ghaziabad

C.R. H.	
Sub Code	KCS451
Sub. Name	Operating Systems Lab

	COURSE OUTCOMES	Bloom's Level
CO1	Students will be able to design and interpret various CPU scheduling algorithm.	K5, K6
CO2	Students will be able to design, develop and implement programs for deadlock handling.	K3, K6
CO3	Students will be able to apply and analyse different page replacement algorithms.	K3, K4
CO4	Students will be able to develop and compare various disk scheduling algorithms	K2, K6

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2						1			1
CO2	1	2	2	1					1			1
CO3	1	2	2						1			1
CO4	1	2	2						1			1
Avg	1.00	2.00	2.00	1.00					1.00			1.00

CO-PSO Matrix										
COs	PSO1	PSO2	PSO3	PSO4						
CO1	1	2		1						
CO2	1	2		1						
CO3	1	2		1						
CO4	1	2		1						
Avg	1.00	2.00		1.00						

. जारस्त मा क	
Sub Code	KCS453
Sub. Name	Python Programming Lab

	COURSE OUTCOMES	Bloom's Level
CO1	Students will be able to describe the numbers, math functions, strings, list, tuples and dictionaries in python	K1
CO2	Students will be able to acquire the skills to apply different decision-making statements and functions in python	K3
CO3	Students will be able to interpret object-oriented programming in python	K5
CO4	Students will be able to develop skill to understand and summarize different file handling operations	K6
CO5	Students will be able to demonstrate the ability to design GUI applications in python and evaluate different database operations	K3

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	3	2	3				3	3
CO2	3	2	3	3	2	3	2				3	3
CO3	3	2	3	2	3	3	3				3	2
CO4	3	2	3	2	2	2	2				2	3
CO5	3	2	3		3	3	2				2	3
Avg	3.00	2.00	2.80	2.50	2.60	2.60	2.40				2.60	2.80

CO-PSO Matrix										
COs	PSO1	PSO2	PSO3	PSO4						
CO1	2	1	2	1						
CO2	2	1	1	1						
CO3	2	1	1	1						
CO4	2	1	1	1						
CO5	2	1	1	1						
Avg	2.00	1.00	1.20	1.00						

गकारस्ते मा करा	
Sub Code	KIT 401
Sub. Name	Web Designing

	COURSE OUTCOMES	Bloom's Level
CO1	Understand principle of Web page design and about types of websites	K2
CO2	Visualize and Recognize the basic concept of HTML and application in web designing.	K1, K2
CO3	Recognize and apply the elements of Creating Style Sheet (CSS).	K1, K3
CO4	Understanding the basic concept of Java Script and its application.	K2
CO5	Introduce basics concept of Web Hosting and apply the concept of SEO	K2

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	3				1	3	1	3
CO2	1	1	2	1	3				3	3	2	3
CO3	1	1	2	1	3				3	3	3	3
CO4	1	1	3	2	3				3	3	3	3
CO5	1	1	3	1	3			3	3	3	3	3
Avg	1	1	2.2	1.2	3			3	2.6	3	2.4	3

CO-PSO Matrix											
COs	PSO1	PSO2	PSO3	PSO4							
CO1	3	3	1	1							
CO2	3	3	1	1							
CO3	3	3	1	1							
CO4	3	3	1	1							
CO5	2	2	1	1							
Avg	2.8	2.8	1	1							

*गरस्त भा *	
Sub Code	KIT 451
Sub. Name	Web Designing Lab

	COURSE OUTCOMES	Bloom's Level
CO1	Understand fundamentals of web development.	K2
CO2	Understand, analyze and apply the role of scripts/languages like HTML and CSS.	K2, K3, K4
CO3	Understand, analyze and design the role of JavaScript for dynamic web pages.	K2, K4, K6

	CO-PO Matrix											
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1				1			3
CO2	1	1	1	2	2				1	1	2	3
CO3	3	2	2	3	2				2	2	3	3
Avg	1.67	1.33	1.33	2.00	1.67				1.33	1.50	2.50	3.00

CO-PSO Matrix											
COs	PSO1	PSO2	PSO3	PSO4							
CO1	3	1									
CO2	3	2	1	1							
CO3	3	3	2	1							
Avg	3.00	2.00	1.50	1.00							

Sub Code	KVE-401
Sub. Name	Universal Human Values & Professional Ethics

	COURSE OUTCOMES	Bloom's Level
CO1	Students who complete this course should be able to realize the importance & need of human values and value education to human being.	K2
CO2	.Students should be able to realize the importance of self exploration in harmony of family.	K2
CO3	They should be able to understand and appreciate role of harmonious family in peaceful society.	K2
CO4	Students who complete this course should be able to investigate his/her self & make it suitable to society and existence.	K4
CO5	Students should be able to apply the ethical and human values in family, society, nature and professional life.	K3

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3						2
CO2						3	3	1				
CO3			2			3	2		2			
CO4			2				2	2				
CO5			2	2			1	2				2
Avg			2.00	2.00		3.00	2.00	1.67	2.00			2.00

CO-PSO Matrix									
COs	PSO1	PSO2	PSO3	PSO4					
CO1				1					
CO2									
CO3				1					
CO4				1					
CO5				2					
Avg				1.25					

CONTECTION CONTECTION

Sub Code	KNC-402
Sub. Name	Python Programming
Sub. Mane	

COURSE OUTCOMES						
CO1	To read and write simple Python programs	K2				
CO2	To develop Python programs with conditionals and loops	K6				
CO3	To define Python functions and to use Python data structures—lists, tuples, dictionaries	K1				
CO4	To do input/output with files in Python	K3				
CO5	To do searching, sorting and merging in Python	K3				

CO-PO Matrix												
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	2	2	2	2		3	3
CO2	2	3	3	3	1	2	2	2	2		2	3
CO3	2	3	2	2	1	2	2	2	2		2	3
CO4	3	3	3	3	2	2	2	2	2		3	3
CO5	3	3	3	3	2	2	1	2	1		3	3
Avg	2.60	3.00	2.80	2.60	1.40	2.00	1.80	2.00	1.80		2.60	3.00

CO-PSO Matrix				
COs	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2
CO2	3	3	2	3
CO3	3	1	2	3
CO4	3	3	3	3
CO5	3	2	3	3
CO6				
Avg	3.00	2.20	2.40	2.80